End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation with TCP Throughput

Manish Jain
Constantinos Dovrolis
SIGCOMM 2002

Presented by:
Honggang Zhang
Talk Overview

- Capacity and available bandwidth (avail-bw)
- Avail-bw estimation methodology (SLoPS) and tool (Pathload)
- Verification of Pathload
- Using Pathload to examine avail-bw variability
Capacity and Available bandwidth

- Path capacity C: maximum possible end-to-end throughput. It is defined as $C = \min_{i=0,...,H} \{C_i\}$, where C_i is capacity of link i.

 Narrow Link: the link with minimum capacity

- Avail-bw: spare capacity in the path. Maximum end-to-end throughput given cross traffic load. It is a time-varying metric, defined as average over certain time interval.

 Tight Link: the link with minimum available bandwidth.

[Diagram of network flow with capacities and available bandwidths]
Definition of avail-bw

- u_i : average utilization of link i in a time interval of length τ ($0 \leq u_i \leq 1$)
- **Avail-bw of link i:** $A_i = C_i \cdot (1-u_i)$

End-to-end avail-bw: $A = \min_{i=0 \ldots H} A_i = \min_{i=0 \ldots H} C_i(1-u_i)$

- Time interval length τ : averaging timescale

- **Avail-bw is limited by tight-link**
Previous work on avail-bw estimation

- Measure throughput of bulk TCP transfer
 - A bulk TCP’s throughput is not avail-bw.
 - TCP saturates path (i.e., intrusive measurements)
- Carter & Crovella: dispersion of long packets trains (cprobe)
- Ribeiro et al.: estimation technique for single-queue paths
- Melander et al.: attempt to estimate capacity & avail-bw of every link in path
Self-loading Periodic Streams (SLoPS)

- **SND** sends a periodic UDP packet stream of rate R
- Stream characteristics: K packets, size L, period T, rate $R=L/T$
- **RCV** Measured One-Way Delay (OWD): $D^K = T^{RCV}_{\text{arrive}} - T^{SND}_{\text{send}}$
- OWD variation: $\Delta D^k = D^{k+1} - D^k$ (independent of clock offset)
- With a stationary & fluid model for the cross traffic, and FIFO queues:
 - If $R > A = \min A_i$, then $\Delta D^k > 0$ for $k=1,\ldots,K-1$
 - Else, $\Delta D^k = 0$ for $k=1,\ldots,K-1$
Illustration of basic idea

• Periodic stream: K packets, period T, packet size L, rate: \(R = \frac{L}{T} \)
Increasing delay trend: R > A

- Path: Univ-Oregon to Univ-Delaware (12-hops)
- A=73Mbps (MRTG), R=96Mbps (K=100 packets, T=100μs, L=1200B)
Non-increasing delay trend: $R < A$

- Path: Univ-Oregon to Univ-Delaware (12-hops)
- $A=74$Mbps (MRTG), $R=37$Mbps ($K=100$ packets, $T=100\mu s$, $L=462$B)
Iterative rate adjustment to measure A

- **Source**: send n-th periodic stream with rate $R(n)$
- **Receiver**: measure delays D^k for $k=1\ldots K$
- **Receiver**: check for increasing delay trend, notify source
- **Source**:
 - If delays show increasing trend ($R(n) > A$), $R_{\text{max}} = R(n)$;
 - If delays show non-increasing trend ($R(n) < A$), $R_{\text{min}} = R(n)$;
 - $R(n+1) = (R_{\text{max}} + R_{\text{min}})/2$;

- **Exit when** $R_{\text{max}} - R_{\text{min}} \leq \omega$ (ω: estimate resolution)
Rate-adjustment Algorithm

In actual implementation: a fleet of N streams sent out at time n to infer if $R(n)>A$, $R(n)<A$, or $R(n) \approx A$. Then, the iterative algorithm determines the rate $R(n+1)$ of the next fleet.

- One Stream $V=KT$
- Interval Δ between streams: $\max \{ RTT, 9V \}$
- N streams in a fleet at a single iterative step
 - $N_{\text{default}} = 12$

Measurement Latency? Time scale?
K_{\text{default}}=100$, if $L=800$B, $T=100\mu$sec, a stream lasts 10msec.
Using default parameters, if $A \approx 100$Mbps, $\Delta=100$ms, the tool takes 15 seconds to converge.
Rate-adjustment Algorithm, Grey-region, and avail-bw variability

- Measurement stream rate can fall into avail-bw variation range

Pathload reports grey-region boundaries \([G_{\text{min}}, G_{\text{max}}]\)

- Relative width of grey-region: quantify avail-bw variability
Detection of increasing trend in a single stream

Pairwise Comparison Test (PCT)

\[
PCT = \frac{\sum_{k=2}^{K} I(D^k > D^{k-1})}{K - 1}
\]

\[0 \leq PCT \leq 1\]

Pairwise Difference Test (PDT)

\[
PDT = \frac{D^K - D^1}{\sum_{k=2}^{K} |D^k - D^{k-1}|}
\]

\[-1 \leq PDT \leq 1\]
Experiment verification

- From Univ-Oregon to Univ-Delaware
- Tight link: U-Oregon GigaPoP link (C=155Mbps)
- Compare Pathload estimate (average of consecutive runs for 5 mins) with 5-min average avail-bw from MRTG readings.

![U-Oregon to U-Delaware availability graph](chart.png)
Pathload: latency and intrusiveness

• For RTT=100msec and A≈100Mbps, Pathload takes approx 15 seconds to converge

• Pathload does not cause:
 – Significant reduction in avail-bw (less than 10%)
 – Significant increase in queuing delays

• It is not intrusive: does not cause significant increases in network utilization, delays, or losses.

• To achieve non-intrusiveness:
 – Short measurement streams (K=100)
 – Introduce delay (‘silence period’) between streams
Avail-bw variability versus traffic load

- Relative variation index: \(\rho = \frac{R_{\text{max}} - R_{\text{min}}}{(R_{\text{max}} + R_{\text{min}})/2} \)

![Graph showing CDF of \(\rho \).](image)

C=12.4Mbps.

110 runs.

- Heavier tight link utilization leads to higher avail-bw variability
Avail-bw variability versus stream length

CDF of ρ.

$C=12.4\text{Mbps}$.

The stream duration for $R=A(=4.5\text{Mbps})$, $L=200\text{B}$, $T=356\mu\text{s}$ is:

- 18ms for $K=50$, 36ms for $K=100$, 180ms for $K=500$

- Longer probing streams observe lower avail-bw variability
- But also, longer streams can be more intrusive
Future directions

- Sensitivity analysis for several Pathload parameters
- Apply avail-bw estimation in high-throughput TCP bulk transfers
- Apply avail-bw in overlay network routing optimizations
- Pathload is currently available at www.pathrate.org
Comments

• What can we take away from this paper?
 – Using binary search to find out the avail-bw by sending out probing packets.
 – More … ?

• What I like about this paper?
 – Basic idea is simple and easy to be implemented.
 Looking at the trend of delays of a periodic stream.
 – Algorithm is well designed.
 – Actual experiments to verify methodology.
 – Pathload is used to estimate the variability of avail-bw.
 – More …. ?
Questions

• Not intrusive?
 – Only gives a single experiment. Difficult to justify.
 – How about if lots of users are using pathloads?

• Almost all parameters are empirical.
 – Could be difficult to tune them under different scenarios.
 – Difficult to draw general conclusions.

• Difficult to predict converge time.
 – In their reported experiments, converge time for a single fleet of streams is [10, 30] seconds.

• Works well when there is only one tight link.

• Stationary assumption.

• More…. ?
Some interesting research problems?
Thank you!