
2.7 Socket Programming with TCP

Now that we have looked at a number of important network applications, let’s
explore how network application programs are actually written. In this section we’ll
write application programs that use TCP; in the following section we’ll write pro-
grams that use UDP.

Recall from Section 2.1 that many network applications consist of a pair of pro-
grams—a client program and a server program—residing in two different end sys-
tems. When these two programs are executed, a client and a server process are
created, and these processes communicate with each other by reading from and writ-
ing to sockets. When creating a network application, the developer’s main task is to
write the code for both the client and server programs.

There are two sorts of network applications. One sort is an implementation of a
protocol standard defined in, for example, an RFC. For such an implementation, the
client and server programs must conform to the rules dictated by the RFC. For
example, the client program could be an implementation of the client side of the
FTP protocol, described in Section 2.3 and explicitly defined in RFC 959; similarly,
the server program could be an implementation of the FTP server protocol, also
explicitly defined in RFC 959. If one developer writes code for the client program
and an independent developer writes code for the server program, and both develop-
ers carefully follow the rules of the RFC, then the two programs will be able to
interoperate. Indeed, many of today’s network applications involve communication
between client and server programs that have been created by independent develop-
ers—for example, a Firefox browser communicating with an Apache Web server, or
an FTP client on a PC uploading a file to a Linux FTP server. When a client or server
program implements a protocol defined in an RFC, it should use the port number
associated with the protocol. (Port numbers were briefly discussed in Section 2.1.
They are covered in more detail in Chapter 3.)

The other sort of network application is a proprietary network application. In this
case the application-layer protocol used by the client and server programs do not
necessarily conform to any existing RFC. A single developer (or development team)
creates both the client and server programs, and the developer has complete control
over what goes in the code. But because the code does not implement a public-
domain protocol, other independent developers will not be able to develop code that
interoperates with the application. When developing a proprietary application, the
developer must be careful not to use one of the well-known port numbers defined in
the RFCs.

In this and the next section, we examine the key issues in developing a propri-
etary client-server application. During the development phase, one of the first deci-
sions the developer must make is whether the application is to run over TCP or over
UDP. Recall that TCP is connection oriented and provides a reliable byte-stream
channel through which data flows between two end systems. UDP is connectionless

160 CHAPTER 2 • APPLICATION LAYER

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 160



and sends independent packets of data from one end system to the other, without any
guarantees about delivery.

In this section we develop a simple client application that runs over TCP; in the
next section, we develop a simple client application that runs over UDP. We present
these simple TCP and UDP applications in Java. We could have written the code in
C or C++, but we opted for Java mostly because the applications are more neatly
and cleanly written in Java. With Java there are fewer lines of code, and each line
can be explained to the novice programmer without much difficulty. But there is no
need to be frightened if you are not familiar with Java. You should be able to follow
the code if you have experience programming in another language.

For readers who are interested in client-server programming in C, there are several
good references available [Donahoo 2001; Stevens 1997; Frost 1994; Kurose 1996].

2.7.1 Socket Programming with TCP

Recall from Section 2.1 that processes running on different machines communicate
with each other by sending messages into sockets. We said that each process was
analogous to a house and the process’s socket is analogous to a door. As shown in
Figure 2.28, the socket is the door between the application process and TCP. The
application developer has control of everything on the application-layer side of the
socket; however, it has little control of the transport-layer side. (At the very most,
the application developer has the ability to fix a few TCP parameters, such as maxi-
mum buffer size and maximum segment size.)

2.7 • SOCKET PROGRAMMING WITH TCP 161

Process

Host or
server

Host or
server

Controlled
by application
developer

Controlled
by application
developer

Process

TCP with
buffers,
variables Internet

Controlled
by operating
system

Controlled
by operating
system

TCP with
buffers,
variables

Socket Socket

Figure 2.28 � Processes communicating through TCP sockets

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 161



Now let’s take a closer look at the interaction of the client and server programs.
The client has the job of initiating contact with the server. In order for the server to
be able to react to the client’s initial contact, the server has to be ready. This implies
two things. First, the server program cannot be dormant—that is, it must be running
as a process before the client attempts to initiate contact. Second, the server program
must have some sort of door—more precisely, a socket—that welcomes some initial
contact from a client process running on an arbitrary host. Using our house/door
analogy for a process/socket, we will sometimes refer to the client’s initial contact
as “knocking on the welcoming door.”

With the server process running, the client process can initiate a TCP connec-
tion to the server. This is done in the client program by creating a socket. When the
client creates its socket, it specifies the address of the server process, namely, the IP
address of the server host and the port number of the server process. Once the socket
has been created in the client program, TCP in the client initiates a three-way hand-
shake and establishes a TCP connection with the server. The three-way handshake,
which takes place at the transport layer, is completely transparent to the client and
server programs.

During the three-way handshake, the client process knocks on the welcoming
door of the server process. When the server “hears” the knocking, it creates a new
door—more precisely, a new socket—that is dedicated to that particular client. In
our example below, the welcoming door is a ServerSocket object that we call
the welcomeSocket. When a client knocks on this door, the program invokes
welcomeSocket’s accept() method, which creates a new door for the client.
At the end of the handshaking phase, a TCP connection exists between the client’s
socket and the server’s new socket. Henceforth, we refer to the server’s new, dedi-
cated socket as the server’s connection socket.

From the application’s perspective, the TCP connection is a direct virtual pipe
between the client’s socket and the server’s connection socket. The client process
can send arbitrary bytes into its socket, and TCP guarantees that the server process
will receive (through the connection socket) each byte in the order sent. TCP thus
provides a reliable byte-stream service between the client and server processes.
Furthermore, just as people can go in and out the same door, the client process not
only sends bytes into but also receives bytes from its socket; similarly, the server
process not only receives bytes from but also sends bytes into its connection socket.
This is illustrated in Figure 2.29. Because sockets play a central role in client/server
applications, client/server application development is also referred to as socket pro-
gramming.

Before providing our example client-server application, it is useful to discuss
the notion of a stream. A stream is a sequence of characters that flow into or out of
a process. Each stream is either an input stream for the process or an output
stream for the process. If the stream is an input stream, then it is attached to some
input source for the process, such as standard input (the keyboard) or a socket into
which data flows from the Internet. If the stream is an output stream, then it is

162 CHAPTER 2 • APPLICATION LAYER

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 162



attached to some output source for the process, such as standard output (the moni-
tor) or a socket out of which data flows into the Internet.

2.7.2 An Example Client-Server Application in Java

We use the following simple client-server application to demonstrate socket pro-
gramming for both TCP and UDP:

1. A client reads a line from its standard input (keyboard) and sends the line out
its socket to the server.

2. The server reads a line from its connection socket.
3. The server converts the line to uppercase.
4. The server sends the modified line out its connection socket to the client.
5. The client reads the modified line from its socket and prints the line on its

standard output (monitor).

Figure 2.30 illustrates the main socket-related activity of the client and server.
Next we provide the client-server program pair for a TCP implementation of the

application. We provide a detailed, line-by-line analysis after each program. The

2.7 • SOCKET PROGRAMMING WITH TCP 163

Client process Server process

Client
socket

Welcoming
socket

Three-w
ay handshake

Connection
socket

bytes
bytes

Figure 2.29 � Client-socket, welcoming socket, and connection socket

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 163



client program is called TCPClient.java, and the server program is called
TCPServer.java. In order to emphasize the key issues, we intentionally provide
code that is to the point but not bulletproof. “Good code” would certainly have a few
more auxiliary lines.

Once the two programs are compiled on their respective hosts, the server pro-
gram is first executed at the server host, which creates a server process at the server
host. As discussed above, the server process waits to be contacted by a client process.

164 CHAPTER 2 • APPLICATION LAYER

Create  socket port=x,
for incoming request:

Server

welcomeSocket =
ServerSocket()

(Running on hostid)
Client

TCP
connection setup

Wait for incoming
connection request

connectionSocket =
welcomeSocket.accept()

Read request from
connectionSocket

Write reply to
connectionSocket

Close
connectionSocket

Create socket connected to
hostid,port=x

clientSocket =
Socket()

Send request using
clientSocket

Read reply from
clientSocket

Close
clientSocket

Figure 2.30 � The client-server application, using connection-oriented
transport services

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 164



In this example application, when the client program is executed, a process is cre-
ated at the client, and this process immediately contacts the server and establishes a
TCP connection with it. The user at the client may then use the application to send a
line and then receive a capitalized version of the line.

TCPClient.java

Here is the code for the client side of the application:

2.7 • SOCKET PROGRAMMING WITH TCP 165

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;
BufferedReader inFromUser = new BufferedReader(

new InputStreamReader(System.in));
Socket clientSocket = new Socket(“hostname”, 6789);
DataOutputStream outToServer = new DataOutputStream(

clientSocket.getOutputStream());
BufferedReader inFromServer =

new BufferedReader(new InputStreamReader(
clientSocket.getInputStream()));

sentence = inFromUser.readLine();
outToServer.writeBytes(sentence + ‘\n’);
modifiedSentence = inFromServer.readLine();
System.out.println(“FROM SERVER: “ +

modifiedSentence);
clientSocket.close();

}
}

The program TCPClient creates three streams and one socket, as shown in Figure
2.31. The socket is called clientSocket. The stream inFromUser is an input
stream to the program; it is attached to the standard input (that is, the keyboard).
When the user types characters on the keyboard, the characters flow into the stream
inFromUser. The stream inFromServer is another input stream to the pro-
gram; it is attached to the socket. Characters that arrive from the network flow into
the stream inFromServer. Finally, the stream outToServer is an output
stream from the program; it is also attached to the socket. Characters that the client
sends to the network flow into the stream outToServer.

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 165



Let’s now take a look at the various lines in the code.

import java.io.*;
import java.net.*;

java.io and java.net are Java packages. The java.io package contains
classes for input and output streams. In particular, the java.io package contains
the BufferedReader and DataOutputStream classes, classes that the
program uses to create the three streams previously illustrated. The java.net
package provides classes for network support. In particular, it contains the Socket
and ServerSocket classes. The clientSocket object of this program is
derived from the Socket class.

166 CHAPTER 2 • APPLICATION LAYER

Process

Keyboard

Output
stream

Input
stream

Monitor

Input
stream

o
u
t
T
o
S
e
r
v
e
r

i
n
F
r
o
m
U
s
e
r

i
n
F
r
o
m
S
e
r
v
e
r

clientSocket
TCP socket

To
transport

layer

From
transport

layer

Figure 2.31 � TCPclient has three streams through which characters flow

class TCPClient {
public static void main(String argv[]) throws Exception

{......}
}

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 166



So far, what we’ve seen is standard stuff that you see at the beginning of most Java
code. The third line is the beginning of a class definition block. The keyword class
begins the class definition for the class named TCPClient. A class contains vari-
ables and methods. The variables and methods of the class are embraced by the curly
brackets that begin and end the class definition block. The class TCPClient has no
class variables and exactly one method, the main() method. Methods are similar to
the functions or procedures in languages such as C; the main() method in the Java
language is similar to the main() function in C and C++. When the Java interpreter
executes an application (by being invoked upon the application’s controlling class), it
starts by calling the class’s main() method. The main() method then calls all the
other methods required to run the application. For this introduction to socket pro-
gramming in Java, you may ignore the keywords public, static, void, main,
and throws Exceptions (although you must include them in the code).

String sentence;
String modifiedSentence;

These above two lines declare objects of type String. The object sentence is
the string typed by the user and sent to the server. The object modifiedSen-
tence is the string obtained from the server and sent to the user’s standard output.

BufferedReader inFromUser = new BufferedReader(
new InputStreamReader(System.in));

The above line creates the stream object inFromUser of type Buffered
Reader. The input stream is initialized with System.in, which attaches the stream
to the standard input. The command allows the client to read text from its keyboard.

Socket clientSocket = new Socket(“hostname”, 6789);

The above line creates the object clientSocket of type Socket. It also ini-
tiates the TCP connection between client and server. The string “host-name” must
be replaced with the host name of the server (for example, “apple.poly.edu”).
Before the TCP connection is actually initiated, the client performs a DNS lookup on
the host name to obtain the host’s IP address. The number 6789 is the port number.
You can use a different port number, but you must make sure that you use the same
port number at the server side of the application. As discussed earlier, the host’s IP
address along with the application’s port number identifies the server process.

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

BufferedReader inFromServer =
new BufferedReader(new inputStreamReader(

clientSocket.getInputStream()));

2.7 • SOCKET PROGRAMMING WITH TCP 167

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 167



The above two lines create stream objects that are attached to the socket. The out-
ToServer stream provides the process output to the socket. The inFromServer
stream provides the process input from the socket (see Figure 2.31).

sentence = inFromUser.readLine();

This line places a line typed by the user into the string sentence. The string
sentence continues to gather characters until the user ends the line by typing a
carriage return. The line passes from standard input through the stream inFrom-
User into the string sentence.

outToServer.writeBytes(sentence + ‘\n’);

The above line sends the string sentence augmented with a carriage return into
the outToServer stream. The augmented sentence flows through the client’s
socket and into the TCP pipe. The client then waits to receive characters from the
server.

modifiedSentence = inFromServer.readLine();

When characters arrive from the server, they flow through the stream inFrom-
Server and get placed into the string modifiedSentence. Characters continue
to accumulate in modifiedSentence until the line ends with a carriage return
character.

System.out.println(“FROM SERVER “ + modifiedSentence);

The above line prints to the monitor the string modifiedSentence returned by
the server.

clientSocket.close();

This last line closes the socket and, hence, closes the TCP connection between the
client and the server. It causes TCP in the client to send a TCP message to TCP in
the server (see Section 3.5).

TCPServer.java

Now let’s take a look at the server program.

import java.io.*;
import java.net.*;
class TCPServer {

168 CHAPTER 2 • APPLICATION LAYER

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 168



public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;
ServerSocket welcomeSocket = new ServerSocket 

(6789);
while(true) {

Socket connectionSocket = welcomeSocket. 
accept();

BufferedReader inFromClient = 
new BufferedReader(new InputStreamReader(

connectionSocket.getInputStream()));
DataOutputStream outToClient = 

new DataOutputStream(
connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();
capitalizedSentence =

clientSentence.toUpperCase() + ‘\n’;
outToClient.writeBytes(capitalizedSentence);

}
}

}

2.7 • SOCKET PROGRAMMING WITH TCP 169

TCPServer has many similarities with TCPClient. Let’s now take a look at the
lines in TCPServer.java. We will not comment on the lines that are identical or
similar to commands in TCPClient.java.

The first line in TCPServer is substantially different from what we saw in
TCPClient:

ServerSocket welcomeSocket = new ServerSocket(6789);

This line creates the object welcomeSocket, which is of type ServerSocket.
The welcomeSocket is a sort of door that listens for a knock from some client.
The welcomeSocket listens on port number 6789. The next line is

Socket connectionSocket = welcomeSocket.accept();

This line creates a new socket, called connectionSocket, when some client
knocks on welcomeSocket. This socket also has port number 6789. (We’ll
explain why both sockets have the same port number in Chapter 3.) TCP then estab-
lishes a direct virtual pipe between clientSocket at the client and connec-
tionSocket at the server. The client and server can then send bytes to each other

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 169



over the pipe, and all bytes sent arrive at the other side in order. With connec-
tionSocket established, the server can continue to listen for requests from other
clients for the application using welcomeSocket. (This version of the program
doesn’t actually listen for more connection requests, but it can be modified with
threads to do so.) The program then creates several stream objects, analogous to the
stream objects created in clientSocket. Now consider

170 CHAPTER 2 • APPLICATION LAYER

capitalizedSentence = clientSentence.toUpperCase() + ‘\n’;

This command is the heart of the application. It takes the line sent by the client, cap-
italizes it, and adds a carriage return. It uses the method toUpperCase(). All the
other commands in the program are peripheral; they are used for communication
with the client.

To test the program pair, you install and compile TCPClient.java in one
host and TCPServer.java in another host. Be sure to include the proper host-
name of the server in TCPClient.java. You next execute TCPServer.class,
the compiled server program, in the server. This creates a process in the server that
idles until it is contacted by some client. Then you execute TCPClient.class,
the compiled client program, in the client. This creates a process in the client and
establishes a TCP connection between the client and server processes. Finally, to use
the application, you type a sentence followed by a carriage return.

To develop your own client-server application, you can begin by slightly modi-
fying the programs. For example, instead of converting all the letters to uppercase,
the server can count the number of times the letter s appears and return this number.

2.8 Socket Programming with UDP

We learned in the previous section that when two processes communicate over TCP,
it is as if there were a pipe between the two processes. This pipe remains in place
until one of the two processes closes it. When one of the processes wants to send
some bytes to the other process, it simply inserts the bytes into the pipe. The send-
ing process does not have to attach a destination address to the bytes because the
pipe is logically connected to the destination. Furthermore, the pipe provides a reli-
able byte-stream channel—the sequence of bytes received by the receiving process
is exactly the sequence of bytes that the sender inserted into the pipe.

UDP also allows two (or more) processes running on different hosts to commu-
nicate. However, UDP differs from TCP in many fundamental ways. First, UDP is a
connectionless service—there isn’t an initial handshaking phase during which a pipe
is established between the two processes. Because UDP doesn’t have a pipe, when a
process wants to send a batch of bytes to another process, the sending process must

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 170



attach the destination process’s address to the batch of bytes. And this must be done
for each batch of bytes the sending process sends. As an analogy, consider a group of
20 persons who take five taxis to a common destination; as the people enter the taxis,
each taxi driver must separately be informed of the destination. Thus, UDP is similar
to a taxi service. The destination address is a tuple consisting of the IP address of the
destination host and the port number of the destination process. We refer to the batch
of information bytes along with the IP destination address and port number as the
“packet.” UDP provides an unreliable message-oriented service model, in that it
makes a best effort to deliver the batch of bytes to the destination. It is message-
oriented in that batches are bytes that are sent in a single zero operation at the send-
ing side, will be delivered as a batch at the receiving side; this contrasts with TCP’s
byte-stream semantics. UDP service is best-effort in that UDP makes no guarantee
that the batch of bytes will indeed be delivered. The UDP service thus contrasts
sharply (in several respects) with TCP’s reliable byte-stream service model.

After having created a packet, the sending process pushes the packet into the
network through a socket. Continuing with our taxi analogy, at the other side of the
sending socket, there is a taxi waiting for the packet. The taxi then drives the packet
in the direction of the packet’s destination address. However, the taxi does not guar-
antee that it will eventually get the packet to its ultimate destination—the taxi could
break down or suffer some other unforeseen problem. In other terms, UDP provides
an unreliable transport service to its communication processes—it makes no
guarantees that a packet will reach its ultimate destination.

In this section we illustrate socket programming by redeveloping the same
application of the previous section, but this time over UDP. We’ll see that the code
for UDP is different from the TCP code in many important ways. In particular,
there is (1) no initial handshaking between the two processes and therefore no
need for a welcoming socket, (2) no streams are attached to the sockets, (3) the
sending hosts create packets by attaching the IP destination address and port num-
ber to each batch of bytes it sends, and (4) the receiving process must unravel each
received packet to obtain the packet’s information bytes. Recall once again our
simple application:

1. A client reads a line from its standard input (keyboard) and sends the line out
its socket to the server.

2. The server reads a line from its socket.
3. The server converts the line to uppercase.
4. The server sends the modified line out its socket to the client.
5. The client reads the modified line from its socket and prints the line on its stan-

dard output (monitor).

Figure 2.32 highlights the main socket-related activity of the client and server
that communicate over a connectionless (UDP) transport service.

2.8 • SOCKET PROGRAMMING WITH UDP 171

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 171



import java.io.*;
import java.net.*;
class UDPClient {

public static void main(String args[]) throws Exception
{

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader 

(System.in));
DatagramSocket clientSocket = new DatagramSocket();
InetAddress IPAddress = 

InetAddress.getByName(“hostname”);
byte[] sendData = new byte[1024];

172 CHAPTER 2 • APPLICATION LAYER

Create  socket port=x,
for incoming request:

Server

serverSocket =
DatagramSocket()

(Running on hostid)
Client

Read request from
serverSocket

Write reply to

specifying client host
address, port number

serverSocket

Create address
(hostid,port=x)

send datagram request using
clientSocket

Create socket
clientSocket =
DatagramSocket()

Read reply from
clientSocket

Close
clientSocket

Figure 2.32 � The client-server application, using connectionless transport
services

UDPClient.java

Here is the code for the client side of the application:

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 172



byte[] receiveData = new byte[1024];
String sentence = inFromUser.readLine();
sendData = sentence.getBytes();
DatagramPacket sendPacket = 

new DatagramPacket(sendData, sendData.length, 
IPAddress, 9876);

clientSocket.send(sendPacket);
DatagramPacket receivePacket = 

new DatagramPacket(receiveData, 
receiveData.length);

clientSocket.receive(receivePacket);
String modifiedSentence = 

new String(receivePacket.getData());
System.out.println(“FROM SERVER:” + 

modifiedSentence);
clientSocket.close();

}
}

2.8 • SOCKET PROGRAMMING WITH UDP 173

The program UDPClient.java constructs one stream and one socket, as
shown in Figure 2.33. The socket is called clientSocket, and it is of type
DatagramSocket. Note that UDP uses a different kind of socket than TCP at
the client. In particular, with UDP our client uses a DatagramSocket, whereas
with TCP our client used a Socket. The stream inFromUser is an input stream
to the program; it is attached to the standard input, that is, to the keyboard. We had
an equivalent stream in our TCP version of the program. When the user types
characters on the keyboard, the characters flow into the stream inFromUser.
But in contrast with TCP, there are no streams (input or output) attached to the
socket. Instead of feeding bytes to the stream attached to a Socket object, UDP
will push individual packets through the DatagramSocket object.

Let’s now take a look at the lines in the code that differ significantly from
TCPClient.java.

DatagramSocket clientSocket = new DatagramSocket();

This line creates the object clientSocket of type DatagramSocket. In contrast
with TCPClient.java, this line does not initiate a TCP connection. In particular,
the client host does not contact the server host upon execution of this line. For this rea-
son, the constructor DatagramSocket() does not take the server host name or port
number as arguments. Using our door-pipe analogy, the execution of the above line cre-
ates a door for the client process but does not create a pipe between the two processes.

InetAddress IPAddress = InetAddress.getByName(“hostname”);

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 173



In order to send bytes to a destination process, we need the address of the process. Part
of this address is the IP address of the destination host. The above line invokes a DNS
lookup that translates the hostname (in this example, supplied in the code by the devel-
oper) to an IP address. DNS was also invoked by the TCP version of the client, although
it was done there implicitly rather than explicitly. The method getByName() takes
as an argument the hostname of the server and returns the IP address of this same
server. It places this address in the object IPAddress of type InetAddress.

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

The byte arrays sendData and receiveData will hold the data the client sends
and receives, respectively.

sendData = sentence.getBytes();

174 CHAPTER 2 • APPLICATION LAYER

Process

Keyboard

UDP
datagram
packet

UDP
datagram
packet

Monitor

Input
stream

i
n
F
r
o
m
U
s
e
r

To
transport

layer

From
transport

layer

s
e
n
d
P
a
c
k
e
t

r
e
c
e
i
v
e
P
a
c
k
e
t

UDP socket
clientSocket

Figure 2.33 � UDPClient has one stream; the socket accepts packets from
the process and delivers packets to the process.

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 174



The above line essentially performs a type conversion. It takes the string
sentence and renames it as sendData, which is an array of bytes.

DatagramPacket sendPacket = new DatagramPacket(
sendData, sendData.length, IPAddress, 9876);

This line constructs the packet, sendPacket, which the client will pop into the
network through its socket. This packet includes that data that is contained in the
packet, sendData, the length of this data, the IP address of the server, and the port
number of the application (which we have set to 9876). Note that sendPacket is
of type DatagramPacket.

clientSocket.send(sendPacket);

In the above line, the method send() of the object clientSocket takes the packet
just constructed and pops it into the network through clientSocket. Once again,
note that UDP sends the line of characters in a manner very different from TCP. TCP
simply inserted the string of characters into a stream, which had a logical direct con-
nection to the server; UDP creates a packet that includes the address of the server. After
sending the packet, the client then waits to receive a packet from the server.

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

In the above line, while waiting for the packet from the server, the client creates a place-
holder for the packet, receivePacket, an object of type DatagramPacket.

clientSocket.receive(receivePacket);

The client idles until it receives a packet; when it does receive a packet, it puts the
packet in receivePacket.

String modifiedSentence =
new String(receivePacket.getData());

The above line extracts the data from receivePacket and performs a type con-
version, converting an array of bytes into the string modifiedSentence.

System.out.println(“FROM SERVER:” + modifiedSentence);

This line, which is also present in TCPClient, prints out the string modified-
Sentence at the client’s monitor.

clientSocket.close();

2.8 • SOCKET PROGRAMMING WITH UDP 175

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 175



This last line closes the socket. Because UDP is connectionless, this line does not
cause the client to send a transport-layer message to the server (in contrast with
TCPClient).

UDPServer.java

Let’s now take a look at the server side of the application:

176 CHAPTER 2 • APPLICATION LAYER

import java.io.*;
import java.net.*;
class UDPServer {

public static void main(String args[]) throws Exception
{
DatagramSocket serverSocket = new

DatagramSocket(9876);
byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];
while(true)

{
DatagramPacket receivePacket =

new DatagramPacket(receiveData,
receiveData.length);

serverSocket.receive(receivePacket);
String sentence = new String(

receivePacket.getData());
InetAddress IPAddress =

receivePacket.getAddress();
int port = receivePacket.getPort();
String capitalizedSentence =

sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();
DatagramPacket sendPacket =
new DatagramPacket(sendData,

sendData.length, IPAddress, port);
serverSocket.send(sendPacket);

}
}

}

The program UDPServer.java constructs one socket, as shown in Figure 2.34.
The socket is called serverSocket. It is an object of type DatagramSocket,
as was the socket in the client side of the application. Once again, no streams are
attached to the socket.

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 176



Let’s now take a look at the lines in the code that differ from TCPServer.java.

DatagramSocket serverSocket = new DatagramSocket(9876);

The above line constructs the DatagramSocket serverSocket at port 9876.
All data sent and received will pass through this socket. Because UDP is connec-
tionless, we do not have to create a new socket and continue to listen for new con-
nection requests, as done in TCPServer.java. If multiple clients access this
application, they will all send their packets into this single door, serverSocket.

String sentence = new String(receivePacket.getData());
InetAddress IPAddress = receivePacket.getAddress();
int port = receivePacket.getPort();

The above three lines unravel the packet that arrives from the client. The first of the
three lines extracts the data from the packet and places the data in the String
sentence; it has an analogous line in UDPClient. The second line extracts the
IP address; the third line extracts the client port number, which is chosen by the
client and is different from the server port number 9876. (We will discuss client port
numbers in some detail in the next chapter.) It is necessary for the server to obtain

2.8 • SOCKET PROGRAMMING WITH UDP 177

Process

UDP
datagram
packet

UDP
datagram
packet

UDP socket
port 9876

To
transport

layer

From
transport

layer

s
e
n
d
P
a
c
k
e
t

r
e
c
e
i
v
e
P
a
c
k
e
t

serverSocket

toUpperCase()

Figure 2.34 � UDPServer has no streams; the socket accepts packets from
the process and delivers packets to the process.

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 177



the address (IP address and port number) of the client, so that it can send the capital-
ized sentence back to the client.

That completes our analysis of the UDP program pair. To test the application,
you install and compile UDPClient.java in one host and UDPServer.java
in another host. (Be sure to include the proper hostname of the server in UDP
Client.java.) Then execute the two programs on their respective hosts.
Unlike with TCP, you can first execute the client side and then the server side.
This is because the client process does not attempt to initiate a connection with
the server when you execute the client program. Once you have executed the
client and server programs, you may use the application by typing a line at the
client.

2.9 Summary

In this chapter we’ve studied the conceptual and the implementation aspects of net-
work applications. We’ve learned about the ubiquitous client-server architecture
adopted by many Internet applications and seen its use in the HTTP, FTP, SMTP,
POP3, and DNS protocols. We’ve studied these important application-level proto-
cols, and their corresponding associated applications (the Web, file transfer, e-mail,
and DNS) in some detail. We’ve also learned about the increasingly prevalent P2P
architecture and how it is used in many applications. We’ve examined how the
socket API can be used to build network applications. We’ve walked through the use
of sockets for connection-oriented (TCP) and connectionless (UDP) end-to-end
transport services. The first step in our journey down the layered network architec-
ture is now complete!

At the very beginning of this book, in Section 1.1, we gave a rather vague, bare-
bones definition of a protocol: “the format and the order of messages exchanged
between two or more communicating entities, as well as the actions taken on the
transmission and/or receipt of a message or other event.” The material in this chap-
ter, and in particular our detailed study of the HTTP, FTP, SMTP, POP3, and DNS
protocols, has now added considerable substance to this definition. Protocols are a
key concept in networking; our study of application protocols has now given us the
opportunity to develop a more intuitive feel for what protocols are all about.

In Section 2.1 we described the service models that TCP and UDP offer to
applications that invoke them. We took an even closer look at these service models
when we developed simple applications that run over TCP and UDP in Sections 2.7
and 2.8. However, we have said little about how TCP and UDP provide these serv-
ice models. For example, we know that TCP provides a reliable data service, but we
haven’t said yet how it does so. In the next chapter we’ll take a careful look at not
only the what, but also the how and why of transport protocols.

178 CHAPTER 2 • APPLICATION LAYER

6588_CH02_085-196.qxd  2/19/09  11:23 AM  Page 178

kurose
Rectangle




