
Lab	4:	ICMP	Pinger	Lab	

In this lab, you will gain a better understanding of Internet Control Message Protocol (ICMP). You will
learn to implement a Ping application using ICMP request and reply messages.

Ping is a computer network application used to test whether a particular host is reachable across an IP
network. It is also used to self-test the network interface card of the computer or as a latency test. It works
by sending ICMP “echo reply” packets to the target host and listening for ICMP “echo reply” replies. The
"echo reply" is sometimes called a pong. Ping measures the round-trip time, records packet loss, and
prints a statistical summary of the echo reply packets received (the minimum, maximum, and the mean of
the round-trip times and in some versions the standard deviation of the mean).

Your task is to develop your own Ping application in Python. Your application will use ICMP but, in
order to keep it simple, will not exactly follow the official specification in RFC 1739. Note that you will
only need to write the client side of the program, as the functionality needed on the server side is built
into almost all operating systems.

You should complete the Ping application so that it sends ping requests to a specified host separated by
approximately one second. Each message contains a payload of data that includes a timestamp. After
sending each packet, the application waits up to one second to receive a reply. If one second goes by
without a reply from the server, then the client assumes that either the ping packet or the pong packet was
lost in the network (or that the server is down).

Code	
Below you will find the skeleton code for the client. You are to complete the skeleton code. The places where
you need to fill in code are marked with #Fill in start and #Fill in end. Each place may require one or
more lines of code.

Additional	Notes	
1. In “receiveOnePing” method, you need to receive the structure ICMP_ECHO_REPLY and fetch the

information you need, such as checksum, sequence number, time to live (TTL), etc. Study the
“sendOnePing” method before trying to complete the “receiveOnePing” method.

2. You do not need to be concerned about the checksum, as it is already given in the code.
3. This lab requires the use of raw sockets. In some operating systems, you may need administrator/root

privileges to be able to run your Pinger program.
4. See the end of this programming exercise for more information on ICMP.

Testing	the	Pinger	
First, test your client by sending packets to localhost, that is, 127.0.0.1.
Then, you should see how your Pinger application communicates across the network by pinging servers
in different continents.

What	to	Hand	in	
You will hand in the complete client code and screenshots of your Pinger output for four target hosts, each
on a different continent.

Skeleton	Python	Code	for	the	ICMP	Pinger	

from socket import *

import os

import sys

import struct

import time

import select

import binascii

ICMP_ECHO_REQUEST = 8

def checksum(string):

 csum = 0

 countTo = (len(string) // 2) * 2

 count = 0

 while count < countTo:

 thisVal = ord(string[count+1]) * 256 + ord(string[count])

 csum = csum + thisVal

 csum = csum & 0xffffffff

 count = count + 2

 if countTo < len(string):

 csum = csum + ord(string[len(string) - 1])

 csum = csum & 0xffffffff

 csum = (csum >> 16) + (csum & 0xffff)

 csum = csum + (csum >> 16)

 answer = ~csum

 answer = answer & 0xffff

 answer = answer >> 8 | (answer << 8 & 0xff00)

 return answer

def receiveOnePing(mySocket, ID, timeout, destAddr):

 timeLeft = timeout

 while 1:

 startedSelect = time.time()

 whatReady = select.select([mySocket], [], [], timeLeft)

 howLongInSelect = (time.time() - startedSelect)

 if whatReady[0] == []: # Timeout

 return "Request timed out."

 timeReceived = time.time()

 recPacket, addr = mySocket.recvfrom(1024)

 #Fill in start

 #Fetch the ICMP header from the IP packet

 #Fill in end

 timeLeft = timeLeft - howLongInSelect

 if timeLeft <= 0:

 return "Request timed out."

def sendOnePing(mySocket, destAddr, ID):

 # Header is type (8), code (8), checksum (16), id (16), sequence (16)

 myChecksum = 0

 # Make a dummy header with a 0 checksum

 # struct -- Interpret strings as packed binary data

 header = struct.pack("bbHHh", ICMP_ECHO_REQUEST, 0, myChecksum, ID, 1)

 data = struct.pack("d", time.time())

 # Calculate the checksum on the data and the dummy header.

 myChecksum = checksum(str(header + data))

 # Get the right checksum, and put in the header

 if sys.platform == 'darwin':

 # Convert 16-bit integers from host to network byte order

 myChecksum = htons(myChecksum) & 0xffff

 else:

 myChecksum = htons(myChecksum)

 header = struct.pack("bbHHh", ICMP_ECHO_REQUEST, 0, myChecksum, ID, 1)

 packet = header + data

 mySocket.sendto(packet, (destAddr, 1)) # AF_INET address must be tuple, not str

 # Both LISTS and TUPLES consist of a number of objects

 # which can be referenced by their position number within the object.

def doOnePing(destAddr, timeout):

 icmp = getprotobyname("icmp")

 # SOCK_RAW is a powerful socket type. For more details: http://sock-
raw.org/papers/sock_raw

 mySocket = socket(AF_INET, SOCK_RAW, icmp)

 myID = os.getpid() & 0xFFFF # Return the current process i

 sendOnePing(mySocket, destAddr, myID)

 delay = receiveOnePing(mySocket, myID, timeout, destAddr)

 mySocket.close()

 return delay

def ping(host, timeout=1):

 # timeout=1 means: If one second goes by without a reply from the server,

 # the client assumes that either the client's ping or the server's pong is lost

 dest = gethostbyname(host)

 print("Pinging " + dest + " using Python:")

 print("")

 # Send ping requests to a server separated by approximately one second

 while 1 :

 delay = doOnePing(dest, timeout)

 print(delay)

 time.sleep(1)# one second

 return delay

ping("google.com")Optional	Exercises	
1. Currently, the program calculates the round-trip time for each packet and prints it out individually.

Modify this to correspond to the way the standard ping program works. You will need to report the
minimum, maximum, and average RTTs at the end of all pings from the client. In addition, calculate
the packet loss rate (in percentage).

2. Your program can only detect timeouts in receiving ICMP echo responses. Modify the Pinger
program to parse the ICMP response error codes and display the corresponding error results to the
user. Examples of ICMP response error codes are 0: Destination Network Unreachable, 1: Destination
Host Unreachable.

	 	

Internet	Control	Message	Protocol	(ICMP)	
ICMP	Header	
The ICMP header starts after bit 160 of the IP header (unless IP options are used).

Bits 160-167 168-175 176-183 184-191
160 Type Code Checksum
192 ID Sequence

• Type - ICMP type.
• Code - Subtype to the given ICMP type.
• Checksum - Error checking data calculated from the ICMP header + data, with value 0 for this

field.
• ID - An ID value, should be returned in the case of echo reply.
• Sequence - A sequence value, should be returned in the case of echo reply.

Echo	Request	
The echo request is an ICMP message whose data is expected to be received back in an echo reply
("pong"). The host must respond to all echo requests with an echo reply containing the exact data received
in the request message.

• Type must be set to 8.
• Code must be set to 0.
• The Identifier and Sequence Number can be used by the client to match the reply with the request

that caused the reply. In practice, most Linux systems use a unique identifier for every ping
process, and sequence number is an increasing number within that process. Windows uses a fixed
identifier, which varies between Windows versions, and a sequence number that is only reset at
boot time.

• The data received by the echo request must be entirely included in the echo reply.

Echo	Reply	
The echo reply is an ICMP message generated in response to an echo request, and is mandatory for all
hosts and routers.

• Type and code must be set to 0.
• The identifier and sequence number can be used by the client to determine which echo requests

are associated with the echo replies.
• The data received in the echo request must be entirely included in the echo reply.

