
Lab	1:	Web	Server	Lab	
In this lab, you will learn the basics of socket programming for TCP connections in Python: how to create
a socket, bind it to a specific address and port, as well as send and receive a HTTP packet. You will also
learn some basics of HTTP header format.

You will develop a web server that handles one HTTP request at a time. Your web server should accept
and parse the HTTP request, get the requested file from the server’s file system, create an HTTP response
message consisting of the requested file preceded by header lines, and then send the response directly to
the client. If the requested file is not present in the server, the server should send an HTTP “404 Not
Found” message back to the client.

Code	
Below you will find the skeleton code for the Web server. You are to complete the skeleton code. The
places where you need to fill in code are marked with #Fill in start and #Fill in end. Each place
may require one or more lines of code.

Running	the	Server	
Put an HTML file (e.g., HelloWorld.html) in the same directory that the server is in. Run the server
program. Determine the IP address of the host that is running the server (e.g., 128.238.251.26). From
another host, open a browser and provide the corresponding URL. For example:

http://128.238.251.26:6789/HelloWorld.html

‘HelloWorld.html’ is the name of the file you placed in the server directory. Note also the use of the port
number after the colon. You need to replace this port number with whatever port you have used in the
server code. In the above example, we have used the port number 6789. The browser should then display
the contents of HelloWorld.html. If you omit ":6789", the browser will assume port 80 and you will get
the web page from the server only if your server is listening at port 80.

Then try to get a file that is not present at the server. You should get a “404 Not Found” message.

What	to	Hand	in	
You will hand in the complete server code along with the screen shots of your client browser, verifying
that you actually receive the contents of the HTML file from the server.

Skeleton	Python	Code	for	the	Web	Server	
#import socket module

from socket import *

import sys # In order to terminate the program

serverSocket = socket(AF_INET, SOCK_STREAM)

#Prepare a sever socket

#Fill in start

#Fill in end

while True:

 #Establish the connection

 print('Ready to serve...')

 connectionSocket, addr = #Fill in start #Fill in end

 try:

 message = #Fill in start #Fill in end

 filename = message.split()[1]

 f = open(filename[1:])

 outputdata = #Fill in start #Fill in end

 #Send one HTTP header line into socket

 #Fill in start

 #Fill in end

 #Send the content of the requested file to the client

 for i in range(0, len(outputdata)):

 connectionSocket.send(outputdata[i].encode())

 connectionSocket.send("\r\n".encode())

 connectionSocket.close()

 except IOError:

 #Send response message for file not found

 #Fill in start

 #Fill in end

 #Close client socket

 #Fill in start

 #Fill in end

serverSocket.close()

sys.exit()#Terminate the program after sending the corresponding data

Optional	Exercises	
1. Currently, the web server handles only one HTTP request at a time. Implement a multithreaded server

that is capable of serving multiple requests simultaneously. Using threading, first create a main thread
in which your modified server listens for clients at a fixed port. When it receives a TCP connection
request from a client, it will set up the TCP connection through another port and services the client
request in a separate thread. There will be a separate TCP connection in a separate thread for each
request/response pair.

2. Instead of using a browser, write your own HTTP client to test your server. Your client will connect
to the server using a TCP connection, send an HTTP request to the server, and display the server
response as an output. You can assume that the HTTP request sent is a GET method.
The client should take command line arguments specifying the server IP address or host name, the
port at which the server is listening, and the path at which the requested object is stored at the server.
The following is an input command format to run the client.

client.py server_host server_port filename

