
Lab	5:	HTTP	Web	Proxy	Server	

In this lab, you will learn how web proxy servers work and one of their basic functionalities – 
caching.  
 
Your task is to develop a small web proxy server which is able to cache web pages. It is a very simple 
proxy server which only understands simple GET-requests, but is able to handle all kinds of objects - 
not just HTML pages, but also images.  
 
Generally, when the client makes a request, the request is sent to the web server. The web server then 
processes the request and sends back a response message to the requesting client. In order to improve 
the performance we create a proxy server between the client and the web server. Now, both the 
request message sent by the client and the response message delivered by the web server pass through 
the proxy server. In other words, the client requests the objects via the proxy server. The proxy server 
will forward the client’s request to the web server. The web server will then generate a response 
message and deliver it to the proxy server, which in turn sends it to the client.  

 

 

 

Code	
Below you will find the skeleton code for the client. You are to complete the skeleton code. The places 
where you need to fill in code are marked with #Fill in start and #Fill in end. Each place may 
require one or more lines of code.  

Running	the	Proxy	Server	
Run the proxy server program using your command prompt and then request a web page from your 
browser. Direct the requests to the proxy server using your IP address and port number. 

For e.g. http://localhost:8888/www.google.com 

To use the proxy server with browser and proxy on separate computers, you will need the IP address 
on which your proxy server is running. In this case, while running the proxy, you will have to replace 
the “localhost” with the IP address of the computer where the proxy server is running. Also note the 
port number used. You will replace the port number used here “8888” with the port number you have 
used in your server code at which your proxy server is listening. 

Configuring	your	Browser	
You can also directly configure your web browser to use your proxy. This depends on your browser. 
In Internet Explorer, you can set the proxy in Tools > Internet Options > Connections tab > LAN 
Settings. In Netscape (and derived browsers such as Mozilla), you can set the proxy in Tools > 
Options > Advanced tab > Network tab > Connection Settings. In both cases you need to give the 

Client	 Proxy	
Server	

Web	
Server	

Request	
	

Request	
	

Response Response



address of the proxy and the port number that you gave when you ran the proxy server. You should be 
able to run the proxy and the browser on the same computer without any problem. With this approach, 
to get a web page using the proxy server, you simply provide the URL of the page you want.  
 
For e.g. http://www.google.com 

What	to	Hand	in	
You will hand in the complete proxy server code and screenshots at the client side verifying that you 
indeed get the web page via the proxy server. 
 



Skeleton	Python	Code	for	the	Proxy	Server	

from socket import * 

import sys 

 

if len(sys.argv) <= 1: 

 print('Usage : "python ProxyServer.py server_ip"\n[server_ip : It is the IP 

Address Of Proxy Server') 

 sys.exit(2) 

  

# Create a server socket, bind it to a port and start listening 

tcpSerSock = socket(AF_INET, SOCK_STREAM) 

# Fill in start. 

# Fill in end. 

while 1: 

 # Strat receiving data from the client 

 print('Ready to serve...') 

 tcpCliSock, addr = tcpSerSock.accept() 

 print('Received a connection from:', addr) 

 message = # Fill in start.  # Fill in end. 

 print(message) 

 # Extract the filename from the given message 

 print(message.split()[1]) 

 filename = message.split()[1].partition("/")[2] 

 print(filename) 

 fileExist = "false" 

 filetouse = "/" + filename 

 print(filetouse) 

 try: 



  # Check wether the file exist in the cache 

  f = open(filetouse[1:], "r")                       

  outputdata = f.readlines()                         

  fileExist = "true" 

  # ProxyServer finds a cache hit and generates a response message 

  tcpCliSock.send("HTTP/1.0 200 OK\r\n")             

  tcpCliSock.send("Content-Type:text/html\r\n") 

  # Fill in start. 

  # Fill in end. 

   print('Read from cache')    

 # Error handling for file not found in cache 

 except IOError: 

  if fileExist == "false":  

   # Create a socket on the proxyserver 

   c = # Fill in start.  # Fill in end. 

   hostn = filename.replace("www.","",1)          

   print(hostn)                                   

   try: 

    # Connect to the socket to port 80 

    # Fill in start.   

    # Fill in end. 

    # Create a temporary file on this socket and ask port 80 

for the file requested by the client 

    fileobj = c.makefile('r', 0)                

    fileobj.write("GET "+"http://" + filename + " 

HTTP/1.0\n\n")   

    # Read the response into buffer 

    # Fill in start.   



    # Fill in end. 

    # Create a new file in the cache for the requested file.  

    # Also send the response in the buffer to client socket 

and the corresponding file in the cache 

    tmpFile = open("./" + filename,"wb")   

    # Fill in start.   

    # Fill in end.    

   except: 

    print("Illegal request")                                                

  else: 

   # HTTP response message for file not found 

   # Fill in start.   

   # Fill in end. 

 # Close the client and the server sockets     

 tcpCliSock.close()  

# Fill in start.   

# Fill in end. 

Optional	Exercises	
1. Currently the proxy server does no error handling. This can be a problem especially when the 

client requests an object which is not available, since the "404 Not found" response usually has no 
response body and the proxy assumes there is a body and tries to read it.  

2. The simple proxy server supports only HTTP GET method. Add support for POST, by including 
the request body sent in the POST-request. 

3. Caching: A typical proxy server will cache the web pages each time the client makes a particular 
request for the first time. The basic functionality of caching works as follows. When the proxy 
gets a request, it checks if the requested object is cached, and if yes, it returns the object from the 
cache, without contacting the server. If the object is not cached, the proxy retrieves the object 
from the server, returns it to the client and caches a copy for future requests. In practice, the proxy 
server must verify that the cached responses are still valid and that they are the correct responses 
to the client's requests. You can read more about caching and how it is handled in HTTP in RFC 
2068. Add the simple caching functionality described above. You do not need to implement any 
replacement or validation policies. Your implementation, however, will need to be able to write 
responses to the disk (i.e., the cache) and fetch them from the disk when you get a cache hit. For 
this you need to implement some internal data structure in the proxy to keep track of which 



objects are cached and where they are on the disk. You can keep this data structure in main 
memory; there is no need to make it persist across shutdowns. 

	


