
chunks, so that they can have something to trade. All other neighboring peers besides
these five peers (four “top” peers and one probing peer) are “choked,” that is, they do
not receive any chunks from Alice. BitTorrent has a number of interesting mecha-
nisms that are not discussed here, including pieces (mini-chunks), pipelining, random
first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-tat
[Cohen 2003]. It has been shown that this incentive scheme can be circumvented
[Liogkas 2006; Locher 2006; Piatek 2007]. Nevertheless, the BitTorrent ecosystem is
wildly successful, with millions of simultaneous peers actively sharing files in hun-
dreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat (or a
variant), but otherwise exactly the same, BitTorrent would likely not even exist now, as
the majority of the users would have been freeriders [Saroiu 2002].

Interesting variants of the BitTorrent protocol are proposed [Guo 2005; Piatek
2007]. Also, many of the P2P live streaming applications, such as PPLive and
ppstream, have been inspired by BitTorrent [Hei 2007].

2.6.2 Distributed Hash Tables (DHTs)

In this section, we will consider how to implement a simple database in a P2P net-
work. Let’s begin by describing a centralized version of this simple database, which
will simply contain (key, value) pairs. For example, the keys could be social secu-
rity numbers and the values could be the corresponding human names; in this case,
an example key-value pair is (156-45-7081, Johnny Wu). Or the keys could be con-
tent names (e.g., names of movies, albums, and software), and the value could be
the IP address at which the content is stored; in this case, an example key-value pair
is (Led Zeppelin IV, 128.17.123.38). We query the database with a key. If there are
one or more key-value pairs in the database that match the query key, the database
returns the corresponding values. So, for example, if the database stores social secu-
rity numbers and their corresponding human names, we can query with a specific
social security number, and the database returns the name of the human who has that
social security number. Or, if the database stores content names and their correspon-
ding IP addresses, we can query with a specific content name, and the database
returns the IP addresses that store the specific content.

Building such a database is straightforward with a client-server architecture that
stores all the (key, value) pairs in one central server. So in this section, we’ll instead
consider how to build a distributed, P2P version of this database that will store the
(key, value) pairs over millions of peers. In the P2P system, each peer will only hold a
small subset of the totality of the (key, value) pairs. We’ll allow any peer to query the
distributed database with a particular key. The distributed database will then locate the
peers that have the corresponding (key, value) pairs and return the key-value pairs to
the querying peer. Any peer will also be allowed to insert new key-value pairs into the
database. Such a distributed database is referred to as a distributed hash table
(DHT).

2.6 • PEER-TO-PEER APPLICATIONS 151

M02_KURO6201_06_SE_C02_PP2.qxd 1/10/12 9:45 AM Page 151

kurose
Rectangle

Before describing how we can create a DHT, let’s first describe a specific
example DHT service in the context of P2P file sharing. In this case, a key is the
content name and the value is the IP address of a peer that has a copy of the content.
So, if Bob and Charlie each have a copy of the latest Linux distribution, then the
DHT database will include the following two key-value pairs: (Linux, IPBob) and
(Linux, IPCharlie). More specifically, since the DHT database is distributed over the
peers, some peer, say Dave, will be responsible for the key “Linux” and will have
the corresponding key-value pairs. Now suppose Alice wants to obtain a copy of
Linux. Clearly, she first needs to know which peers have a copy of Linux before she
can begin to download it. To this end, she queries the DHT with “Linux” as the key.
The DHT then determines that the peer Dave is responsible for the key “Linux.” The
DHT then contacts peer Dave, obtains from Dave the key-value pairs (Linux, IPBob)
and (Linux, IPCharlie), and passes them on to Alice. Alice can then download the lat-
est Linux distribution from either IPBob or IPCharlie.

Now let’s return to the general problem of designing a DHT for general key-
value pairs. One naïve approach to building a DHT is to randomly scatter the (key,
value) pairs across all the peers and have each peer maintain a list of the IP
addresses of all participating peers. In this design, the querying peer sends its query
to all other peers, and the peers containing the (key, value) pairs that match the key
can respond with their matching pairs. Such an approach is completely unscalable,
of course, as it would require each peer to not only know about all other peers (pos-
sibly millions of such peers!) but even worse, have each query sent to all peers.

We now describe an elegant approach to designing a DHT. To this end, let’s first
assign an identifier to each peer, where each identifier is an integer in the range [0,
2n � 1] for some fixed n. Note that each such identifier can be expressed by an n-bit
representation. Let’s also require each key to be an integer in the same range. The
astute reader may have observed that the example keys described a little earlier (social
security numbers and content names) are not integers. To create integers out of such
keys, we will use a hash function that maps each key (e.g., social security number) to
an integer in the range [0, 2n� 1]. A hash function is a many-to-one function for which
two different inputs can have the same output (same integer), but the likelihood of the
having the same output is extremely small. (Readers who are unfamiliar with hash
functions may want to visit Chapter 7, in which hash functions are discussed in some
detail.) The hash function is assumed to be available to all peers in the system. Hence-
forth, when we refer to the “key,” we are referring to the hash of the original key. So,
for example, if the original key is “Led Zeppelin IV,” the key used in the DHT will be
the integer that equals the hash of “Led Zeppelin IV.” As you may have guessed, this
is why “Hash” is used in the term “Distributed Hash Function.”

Let’s now consider the problem of storing the (key, value) pairs in the DHT. The
central issue here is defining a rule for assigning keys to peers. Given that each peer
has an integer identifier and that each key is also an integer in the same range, a natu-
ral approach is to assign each (key, value) pair to the peer whose identifier is the
closest to the key. To implement such a scheme, we’ll need to define what is meant by
“closest,” for which many conventions are possible. For convenience, let’s define the

152 CHAPTER 2 • APPLICATION LAYER

VideoNote
Walking through
distributed hash tables

M02_KURO6201_06_SE_C02_PP2.qxd 1/23/12 10:11 AM Page 152

closest peer as the closest successor of the key. To gain some insight here, let’s take a
look at a specific example. Suppose n � 4 so that all the peer and key identifiers are in
the range [0, 15]. Further suppose that there are eight peers in the system with identi-
fiers 1, 3, 4, 5, 8, 10, 12, and 15. Finally, suppose we want to store the (key, value) pair
(11, Johnny Wu) in one of the eight peers. But in which peer? Using our closest con-
vention, since peer 12 is the closest successor for key 11, we therefore store the pair
(11, Johnny Wu) in the peer 12. [To complete our definition of closest, if the key is
exactly equal to one of the peer identifiers, we store the (key, value) pair in that match-
ing peer; and if the key is larger than all the peer identifiers, we use a modulo-2n con-
vention, storing the (key, value) pair in the peer with the smallest identifier.]

Now suppose a peer, Alice, wants to insert a (key, value) pair into the DHT.
Conceptually, this is straightforward: She first determines the peer whose identifier
is closest to the key; she then sends a message to that peer, instructing it to store the
(key, value) pair. But how does Alice determine the peer that is closest to the key? If
Alice were to keep track of all the peers in the system (peer IDs and corresponding
IP addresses), she could locally determine the closest peer. But such an approach
requires each peer to keep track of all other peers in the DHT—which is completely
impractical for a large-scale system with millions of peers.

Circular DHT

To address this problem of scale, let’s now consider organizing the peers into a
circle. In this circular arrangement, each peer only keeps track of its immediate suc-
cessor and immediate predecessor (modulo 2n). An example of such a circle is
shown in Figure 2.27(a). In this example, n is again 4 and there are the same eight

2.6 • PEER-TO-PEER APPLICATIONS 153

1

3

Who is
responsible
for key 11?

4

5

8
a. b.

10

12

15

1

3

4

5

8
10

12

15

Figure 2.27 � (a) A circular DHT. Peer 3 wants to determine who is
responsible for key 11. (b) A circular DHT with shortcuts

M02_KURO6201_06_SE_C02_PP2.qxd 1/10/12 9:45 AM Page 153

peers from the previous example. Each peer is only aware of its immediate succes-
sor and predecessor; for example, peer 5 knows the IP address and identifier for
peers 8 and 4 but does not necessarily know anything about any other peers that may
be in the DHT. This circular arrangement of the peers is a special case of an overlay
network. In an overlay network, the peers form an abstract logical network which
resides above the “underlay” computer network consisting of physical links, routers,
and hosts. The links in an overlay network are not physical links, but are simply vir-
tual liaisons between pairs of peers. In the overlay in Figure 2.27(a), there are eight
peers and eight overlay links; in the overlay in Figure 2.27(b) there are eight peers
and 16 overlay links. A single overlay link typically uses many physical links and
physical routers in the underlay network.

Using the circular overlay in Figure 2.27(a), now suppose that peer 3 wants to
determine which peer in the DHT is responsible for key 11. Using the circular overlay,
the origin peer (peer 3) creates a message saying “Who is responsible for key 11?” and
sends this message clockwise around the circle. Whenever a peer receives such a mes-
sage, because it knows the identifier of its successor and predecessor, it can determine
whether it is responsible for (that is, closest to) the key in question. If a peer is not
responsible for the key, it simply sends the message to its successor. So, for example,
when peer 4 receives the message asking about key 11, it determines that it is not
responsible for the key (because its successor is closer to the key), so it just passes the
message along to peer 5. This process continues until the message arrives at peer 12,
who determines that it is the closest peer to key 11. At this point, peer 12 can send a
message back to the querying peer, peer 3, indicating that it is responsible for key 11.

The circular DHT provides a very elegant solution for reducing the amount of
overlay information each peer must manage. In particular, each peer needs only to
be aware of two peers, its immediate successor and its immediate predecessor. But
this solution introduces yet a new problem. Although each peer is only aware of two
neighboring peers, to find the node responsible for a key (in the worst case), all N
nodes in the DHT will have to forward a message around the circle; N/2 messages
are sent on average.

Thus, in designing a DHT, there is tradeoff between the number of neighbors each
peer has to track and the number of messages that the DHT needs to send to resolve a
single query. On one hand, if each peer tracks all other peers (mesh overlay), then only
one message is sent per query, but each peer has to keep track of N peers. On the other
hand, with a circular DHT, each peer is only aware of two peers, but N/2 messages are
sent on average for each query. Fortunately, we can refine our designs of DHTs so that
the number of neighbors per peer as well as the number of messages per query is kept
to an acceptable size. One such refinement is to use the circular overlay as a founda-
tion, but add “shortcuts” so that each peer not only keeps track of its immediate suc-
cessor and predecessor, but also of a relatively small number of shortcut peers
scattered about the circle. An example of such a circular DHT with some shortcuts is
shown in Figure 2.27(b). Shortcuts are used to expedite the routing of query messages.
Specifically, when a peer receives a message that is querying for a key, it forwards the

154 CHAPTER 2 • APPLICATION LAYER

M02_KURO6201_06_SE_C02_PP2.qxd 1/10/12 9:45 AM Page 154

message to the neighbor (successor neighbor or one of the shortcut neighbors) which
is the closet to the key. Thus, in Figure 2.27(b), when peer 4 receives the message ask-
ing about key 11, it determines that the closet peer to the key (among its neighbors) is
its shortcut neighbor 10 and then forwards the message directly to peer 10. Clearly,
shortcuts can significantly reduce the number of messages used to process a query.

The next natural question is “How many shortcut neighbors should a peer have,
and which peers should be these shortcut neighbors? This question has received sig-
nificant attention in the research community [Balakrishnan 2003; Androutsellis-
Theotokis 2004]. Importantly, it has been shown that the DHT can be designed so that
both the number of neighbors per peer as well as the number of messages per query is
O(log N), where N is the number of peers. Such designs strike a satisfactory compro-
mise between the extreme solutions of using mesh and circular overlay topologies.

Peer Churn

In P2P systems, a peer can come or go without warning. Thus, when designing a
DHT, we also must be concerned about maintaining the DHT overlay in the pres-
ence of such peer churn. To get a big-picture understanding of how this could be
accomplished, let’s once again consider the circular DHT in Figure 2.27(a). To han-
dle peer churn, we will now require each peer to track (that is, know the IP address
of) its first and second successors; for example, peer 4 now tracks both peer 5 and
peer 8. We also require each peer to periodically verify that its two successors are
alive (for example, by periodically sending ping messages to them and asking for
responses). Let’s now consider how the DHT is maintained when a peer abruptly
leaves. For example, suppose peer 5 in Figure 2.27(a) abruptly leaves. In this case,
the two peers preceding the departed peer (4 and 3) learn that 5 has departed, since
it no longer responds to ping messages. Peers 4 and 3 thus need to update their suc-
cessor state information. Let’s consider how peer 4 updates its state:

1. Peer 4 replaces its first successor (peer 5) with its second successor (peer 8).
2. Peer 4 then asks its new first successor (peer 8) for the identifier and IP address of

its immediate successor (peer 10). Peer 4 then makes peer 10 its second successor.

In the homework problems, you will be asked to determine how peer 3 updates its
overlay routing information.

Having briefly addressed what has to be done when a peer leaves, let’s now
consider what happens when a peer wants to join the DHT. Let’s say a peer with
identifier 13 wants to join the DHT, and at the time of joining, it only knows about
peer 1’s existence in the DHT. Peer 13 would first send peer 1 a message, saying
“what will be 13’s predecessor and successor?” This message gets forwarded
through the DHT until it reaches peer 12, who realizes that it will be 13’s predeces-
sor and that its current successor, peer 15, will become 13’s successor. Next, peer 12
sends this predecessor and successor information to peer 13. Peer 13 can now join

2.6 • PEER-TO-PEER APPLICATIONS 155

M02_KURO6201_06_SE_C02_PP2.qxd 1/10/12 9:45 AM Page 155

the DHT by making peer 15 its successor and by notifying peer 12 that it should
change its immediate successor to 13.

DHTs have been finding widespread use in practice. For example, BitTorrent
uses the Kademlia DHT to create a distributed tracker. In the BitTorrent, the key is
the torrent identifier and the value is the IP addresses of all the peers currently par-
ticipating in the torrent [Falkner 2007, Neglia 2007]. In this manner, by querying
the DHT with a torrent identifier, a newly arriving BitTorrent peer can determine the
peer that is responsible for the identifier (that is, for tracking the peers in the tor-
rent). After having found that peer, the arriving peer can query it for a list of other
peers in the torrent.

2.7 Socket Programming: Creating Network
Applications

Now that we’ve looked at a number of important network applications, let’s explore
how network application programs are actually created. Recall from Section 2.1 that
a typical network application consists of a pair of programs—a client program and a
server program—residing in two different end systems. When these two programs
are executed, a client process and a server process are created, and these processes
communicate with each other by reading from, and writing to, sockets. When creat-
ing a network application, the developer’s main task is therefore to write the code
for both the client and server programs.

There are two types of network applications. One type is an implementation
whose operation is specified in a protocol standard, such as an RFC or some
other standards document; such an application is sometimes referred to as
“open,” since the rules specifying its operation are known to all. For such an
implementation, the client and server programs must conform to the rules dic-
tated by the RFC. For example, the client program could be an implementation
of the client side of the FTP protocol, described in Section 2.3 and explicitly
defined in RFC 959; similarly, the server program could be an implementation of
the FTP server protocol, also explicitly defined in RFC 959. If one developer
writes code for the client program and another developer writes code for the
server program, and both developers carefully follow the rules of the RFC, then
the two programs will be able to interoperate. Indeed, many of today’s network
applications involve communication between client and server programs that
have been created by independent developers—for example, a Firefox browser
communicating with an Apache Web server, or a BitTorrent client communicat-
ing with BitTorrent tracker.

The other type of network application is a proprietary network application.
In this case the client and server programs employ an application-layer protocol that
has not been openly published in an RFC or elsewhere. A single developer (or

156 CHAPTER 2 • APPLICATION LAYER

M02_KURO6201_06_SE_C02_PP2.qxd 1/10/12 9:45 AM Page 156

kurose
Rectangle

