
the stream to three overlay servers; each of the overlay servers may forward the
stream to other overlay servers and hosts; the process continues, creating a dis-
tribution tree on top of the underlying IP network. By multicasting popular live
traffic through overlay networks, overall traffic loads in the Internet can be
reduced over the case of unicast distribution.

Between the reservation camp and the laissez-faire camp there is a yet a third
camp—the differentiated services (Diffserv) camp. This camp wants to make rela-
tively small changes at the network and transport layers, and introduce simple pric-
ing and policing schemes at the edge of the network (that is, at the interface between
the user and the user’s ISP). The idea is to introduce a small number of traffic
classes (possibly just two classes), assign each datagram to one of the classes, give
datagrams different levels of service according to their class in the router queues,
and charge users according to the class of packets that they are sending into the net-
work. We’ll cover differentiated services in Section 7.5.

These three different approaches for handling multimedia traffic—making the
best of best-effort service, differential QoS, and guaranteed QoS—are summarized
in Table 7.1, and covered in Sections 7.3, 7.5, and 7.6, respectively.

7.1.4 Audio and Video Compression

Before audio and video can be transmitted over a computer network, it must be dig-
itized and compressed. The need for digitization is obvious: computer networks
transmit bits, so all transmitted information must be represented as a sequence of
bits. Compression is important because uncompressed audio and video consume a
tremendous amount of storage and bandwidth––removing the inherent redundancies
with compression in digitized audio and video signals can reduce the amount of data
that needs to be stored and transmitted by orders of magnitude. As an example, a
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Deployment
Approach Unit of allocation Guarantee to date Complexity Mechanisms

Making the best none none, or soft everywhere minimal application-layer support, 
of best-effort service CDN, over-provisioning

Differential QoS classes of flows none, or soft some medium policing, scheduling

Guaranteed QoS individual flows soft or hard, once a flow little high policing, scheduling, call 
is admitted admission and signaling

Table 7.1 � Three approaches to supporting multimedia applications
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single image consisting of 1024 pixels, with each pixel encoded into 24 bits (8 bits
each for the colors red, green, and blue), requires 3 Mbytes of storage without com-
pression. It would take seven minutes to send this image over a 64 kbps link. If the
image is compressed at a modest 10:1 compression ratio, the storage requirement is
reduced to 300 Kbytes and the transmission time also drops by a factor of 10.

The topics of audio and video compression are vast. They have been active areas
of research for more than 50 years, and there are now literally hundreds of popular tech-
niques and standards for both audio and video compression. Many universities offer
entire courses on audio compression and on video compression. We therefore provide
here only a brief and high-level introduction to the subject.

Audio Compression in the Internet

A continuously varying analog audio signal (which could emanate from speech or
music) is normally converted to a digital signal as follows:

• The analog audio signal is first sampled at some fixed rate, for example, at 8,000
samples per second. The value of each sample is an arbitrary real number.

• Each of the samples is then rounded to one of a finite number of values. This
operation is referred to as quantization. The number of finite values—called
quantization values—is typically a power of two, for example, 256 quantization
values.

• Each of the quantization values is represented by a fixed number of bits. For
example, if there are 256 quantization values, then each value—and hence each
sample—is represented by 1 byte. Each of the samples is converted to its bit rep-
resentation. The bit representations of all the samples are concatenated together
to form the digital representation of the signal.

As an example, if an analog audio signal is sampled at 8,000 samples per sec-
ond and each sample is quantized and represented by 8 bits, then the resulting digi-
tal signal will have a rate of 64,000 bits per second. This digital signal can then be
converted back—that is, decoded—to an analog signal for playback. However, the
decoded analog signal is typically different from the original audio signal. By
increasing the sampling rate and the number of quantization values, the decoded sig-
nal can approximate the original analog signal. Thus, there is a clear trade-off
between the quality of the decoded signal and the storage and bandwidth require-
ments of the digital signal.

The basic encoding technique that we just described is called pulse code
modulation (PCM). Speech encoding often uses PCM, with a sampling rate of
8,000 samples per second and 8 bits per sample, giving a rate of 64 kbps. The audio
compact disk (CD) also uses PCM, with a sampling rate of 44,100 samples per
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second with 16 bits per sample; this gives a rate of 705.6 kbps for mono and 1.411
Mbps for stereo.

A bit rate of 1.411 Mbps for stereo music exceeds most access rates, and even
64 kbps for speech exceeds the access rate for a dial-up modem user. For these rea-
sons, PCM-encoded speech and music are rarely used in the Internet. Instead, com-
pression techniques are used to reduce the bit rates of the stream. Popular
compression techniques for speech include GSM (13 kbps), G.729 (8 kbps),
G.723.3 (both 6.4 and 5.3 kbps), and a large number of proprietary techniques. A
popular compression technique for near CD-quality stereo music is MPEG 1 layer
3, more commonly known as MP3. MP3 encoders typically compress to rates of 96
kbps, 128 kbps, and 160 kbps, and produce very little sound degradation. When an
MP3 file is broken up into pieces, each piece is still playable. This headerless file
format allows MP3 music files to be streamed across the Internet (assuming the
playback bit rate and speed of the Internet connection are compatible). The MP3
compression standard is complex, using psychoacoustic masking, redundancy
reduction, and bit reservoir buffering.

Video Compression in the Internet

A video is a sequence of images, typically being displayed at a constant rate––for
example, at 24 or 30 images per second. An uncompressed, digitally encoded
image consists of an array of pixels, with each pixel encoded into a number of bits
to represent luminance and color. There are two types of redundancy in video,
both of which can be exploited for compression. Spatial redundancy is the redun-
dancy within a given image. For example, an image that consists of mostly white
space can be efficiently compressed. Temporal redundancy reflects repetition from
image to subsequent image. If, for example, an image and the subsequent image
are exactly the same, there is no reason to re-encode the subsequent image; it is
more efficient simply to indicate during encoding that the subsequent image is
exactly the same.

The MPEG compression standards are among the most popular compression
techniques. These include MPEG 1 for CD-ROM-quality video (1.5 Mbps),
MPEG 2 for high-quality DVD video (3–6 Mbps), and MPEG 4 for object-oriented
video compression. The MPEG standard draws heavily on the JPEG standard for
image compression by exploiting temporal redundancy across images in addition to
the spatial redundancy exploited by JPEG. The H.261 video compression standards
are also very popular in the Internet. In addition there are numerous proprietary
schemes, including Apple’s QuickTime and Real Networks’ encoders.

Readers interested in learning more about audio and video encoding are encour-
aged to see [Rao 1996] and [Solari 1997]. A good book on multimedia networking
in general is [Crowcroft 1999].
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STREAMING STORED AUDIO AND VIDEO: 
FROM REALNETWORKS TO YOUTUBE

RealNetworks, a pioneer in audio and video streaming, was the first company to
bring Internet audio to the mainstream. Its initial product—the RealAudio system
released in 1995—included an audio encoder, an audio server, and an audio
player. Allowing users to browse, select, and stream audio content from the Internet
on demand, it quickly became a popular distribution system for providers of enter-
tainment, educational, and news content. 

Today audio and video streaming are among the most popular services in the
Internet. Not only is there is a plethora of companies offering streamed content, but
there is also a myriad of different server, player, and protocol technologies being
employed. A few interesting examples (as of 2007) include:

• Rhapsody from RealNetworks: Provides streaming and downloading
subscription services to users. Rhapsody uses its own proprietary client, which
retrieves songs from its proprietary server over HTTP. As a song arrives over
HTTP, it is played out through the Rhapsody client. Access to downloaded con-
tent is restricted through a Digital Rights Management (DRM) system.

• MSN Video: Users stream a variety of content, including international news
and music video clips. Video is played through the popular Windows Media
Player (WMP), which is available in almost all Windows hosts. Communication
between WMP and the Microsoft servers is done with the proprietary MMS
(Microsoft Media Server) protocol, which typically attempts to stream content
over RTSP/RTP; if that fails because of firewalls, it attempts to retrieve content
over HTTP.

• Muze: Provides an audio sample service to retailers, such as BestBuy and
Yahoo. Music samples selected at these retailer sites actually come from Muze,
and are streamed through WMP. Muze, Rhapsody, YouTube, and many other
streaming content providers use content distribution networks (CDNs) to distrib-
ute their content, as discussed in Section 7.3.

• YouTube: The immensely popular video-sharing service uses a Flash-based
client (embedded in the Web page). Communication between the client and
the YouTube servers is done over HTTP.

What is in store for the future? Today most of the streaming video content is low-
quality, encoded at rates of 500 kbps or less. Video quality will certainly improve as
broadband and fiber-to-the-home Internet access become more pervasive. And very
possibly our handheld music players will no longer store music—instead we’ll get it
all, on-demand, from wireless channels!

CASE HISTORY
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be willing to pay their ISPs enough for the ISPs to install sufficient bandwidth to
support multimedia applications over a best-effort Internet? The organizational
issues are perhaps even more daunting. Note that an end-end path between two mul-
timedia end points will pass through the networks of multiple ISPs. From an organi-
zational standpoint, would these ISPs be willing to cooperate (perhaps with revenue
sharing) to ensure that the end-end path is properly dimensioned to support multi-
media applications? For a perspective on these economic and organizational issues,
see [Davies 2005]. For a perspective on provisioning tier-1 backbone networks to
support delay-sensitive traffic, see [Fraleigh 2003].

7.4 Protocols for Real-Time Interactive
Applications

Real-time interactive applications, including Internet phone and video conferenc-
ing, promise to drive much of the future Internet growth. It is therefore not surpris-
ing that standards bodies, such as the IETF and ITU, have been busy for many years
(and continue to be busy!) at hammering out standards for this class of applications.
With the appropriate standards in place for real-time interactive applications, inde-
pendent companies will be able to create new and compelling products that interop-
erate with each other. In this section we examine RTP, SIP, and H.323 for real-time
interactive applications. All three sets of standards are enjoying widespread imple-
mentation in industry products.

7.4.1 RTP

In the previous section we learned that the sender side of a multimedia application
appends header fields to the audio/video chunks before passing them to the trans-
port layer. These header fields include sequence numbers and timestamps. Since
most multimedia networking applications can make use of sequence numbers and
timestamps, it is convenient to have a standardized packet structure that includes
fields for audio/video data, sequence number, and timestamp, as well as other poten-
tially useful fields. RTP, defined in RFC 3550, is such a standard. RTP can be used
for transporting common formats such as PCM, GSM, and MP3 for sound and
MPEG and H.263 for video. It can also be used for transporting proprietary sound
and video formats. Today, RTP enjoys widespread implementation in hundreds of
products and research prototypes. It is also complementary to other important real-
time interactive protocols, including SIP and H.323.

In this section we provide an introduction to RTP and to its companion proto-
col, RTCP. We also encourage you to visit Henning Schulzrinne’s RTP site
[Schulzrinne-RTP 2007], which provides a wealth of information on the subject.
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Also, you may want to visit the RAT site [RAT 2007], which documents an Internet
phone application that uses RTP.

RTP Basics

RTP typically runs on top of UDP. The sending side encapsulates a media chunk
within an RTP packet, then encapsulates the packet in a UDP segment, and then
hands the segment to IP. The receiving side extracts the RTP packet from the UDP
segment, then extracts the media chunk from the RTP packet, and then passes the
chunk to the media player for decoding and rendering.

As an example, consider the use of RTP to transport voice. Suppose the voice
source is PCM-encoded (that is, sampled, quantized, and digitized) at 64 kbps. Fur-
ther suppose that the application collects the encoded data in 20-msec chunks, that is,
160 bytes in a chunk. The sending side precedes each chunk of the audio data with
an RTP header that includes the type of audio encoding, a sequence number, and a
timestamp. The RTP header is normally 12 bytes. The audio chunk along with the
RTP header form the RTP packet. The RTP packet is then sent into the UDP socket
interface. At the receiver side, the application receives the RTP packet from its socket
interface. The application extracts the audio chunk from the RTP packet and uses the
header fields of the RTP packet to properly decode and play back the audio chunk.

If an application incorporates RTP—instead of a proprietary scheme to provide
payload type, sequence numbers, or timestamps—then the application will more
easily interoperate with other networked multimedia applications. For example, if
two different companies develop Internet phone software and they both incorporate
RTP into their product, there may be some hope that a user using one of the Internet
phone products will be able to communicate with a user using the other Internet
phone product. In Section 7.4.3 we’ll see that RTP is often used in conjunction with
the Internet telephony standards.

It should be emphasized that RTP does not provide any mechanism to ensure
timely delivery of data or provide other quality-of-service (QoS) guarantees; it does
not even guarantee delivery of packets or prevent out-of-order delivery of packets.
Indeed, RTP encapsulation is seen only at the end systems. Routers do not distin-
guish between IP datagrams that carry RTP packets and IP datagrams that don’t.

RTP allows each source (for example, a camera or a microphone) to be assigned
its own independent RTP stream of packets. For example, for a video conference
between two participants, four RTP streams could be opened—two streams for
transmitting the audio (one in each direction) and two streams for transmitting the
video (again, one in each direction). However, many popular encoding techniques—
including MPEG 1 and MPEG 2—bundle the audio and video into a single stream
during the encoding process. When the audio and video are bundled by the encoder,
then only one RTP stream is generated in each direction.

RTP packets are not limited to unicast applications. They can also be sent over
one-to-many and many-to-many multicast trees. For a many-to-many multicast
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session, all of the session’s senders and sources typically use the same multicast
group for sending their RTP streams. RTP multicast streams belonging together,
such as audio and video streams emanating from multiple senders in a video confer-
ence application, belong to an RTP session.

RTP Packet Header Fields

As shown in Figure 7.10, the four main RTP packet header fields are the payload
type, sequence number, timestamp, and source identifier fields.

The payload type field in the RTP packet is 7 bits long. For an audio stream, the
payload type field is used to indicate the type of audio encoding (for example, PCM,
adaptive delta modulation, linear predictive encoding) that is being used. If a sender
decides to change the encoding in the middle of a session, the sender can inform the
receiver of the change through this payload type field. The sender may want to change
the encoding in order to increase the audio quality or to decrease the RTP stream bit
rate. Table 7.2 lists some of the audio payload types currently supported by RTP.

For a video stream, the payload type is used to indicate the type of video encoding
(for example, motion JPEG, MPEG 1, MPEG 2, H.261). Again, the sender can change
video encoding on the fly during a session. Table 7.3 lists some of the video payload
types currently supported by RTP. The other important fields are the following:

• Sequence number field. The sequence number field is 16 bits long. The sequence
number increments by one for each RTP packet sent, and may be used by the
receiver to detect packet loss and to restore packet sequence. For example, if the
receiver side of the application receives a stream of RTP packets with a gap
between sequence numbers 86 and 89, then the receiver knows that packets 87
and 88 are missing. The receiver can then attempt to conceal the lost data.

• Timestamp field. The timestamp field is 32 bits long. It reflects the sampling
instant of the first byte in the RTP data packet. As we saw in the preceding
section, the receiver can use timestamps to remove packet jitter introduced in
the network and to provide synchronous playout at the receiver. The timestamp
is derived from a sampling clock at the sender. As an example, for audio the
timestamp clock increments by one for each sampling period (for example, each
125 �sec for an 8 kHz sampling clock); if the audio application generates
chunks consisting of 160 encoded samples, then the timestamp increases by 160
for each RTP packet when the source is active. The timestamp clock continues
to increase at a constant rate even if the source is inactive.
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Payload-Type Number Audio Format Sampling Rate Rate

0 PCM �-law 8 kHz 64 kbps 

1 1016 8 kHz 4.8 kbps 

3 GSM 8 kHz 13 kbps 

7 LPC 8 kHz 2.4 kbps 

9 G.722 16 kHz 48–64 kbps 

14 MPEG Audio 90 kHz — 

15 G.728 8 kHz 16 kbps 

Table 7.2 � Audio payload types supported by RTP

Payload-Type Number Video Format 

26 Motion JPEG 

31 H.261 

32 MPEG 1 video 

33 MPEG 2 video 

Table 7.3 � Some video payload types supported by RTP

• Synchronization source identifier (SSRC). The SSRC field is 32 bits long. It iden-
tifies the source of the RTP stream. Typically, each stream in an RTP session has
a distinct SSRC. The SSRC is not the IP address of the sender, but instead is a
number that the source assigns randomly when the new stream is started. The
probability that two streams get assigned the same SSRC is very small. Should
this happen, the two sources pick a new SSRC value.

Developing Software Applications with RTP

There are two approaches to developing an RTP-based networked application. The
first approach is for the application developer to incorporate RTP by hand––that is,
actually to write the code that performs RTP encapsulation at the sender side and
RTP unraveling at the receiver side. The second approach is for the application
developer to use existing RTP libraries (for C programmers) and Java classes (for
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Java programmers), which perform the encapsulation and unraveling for the appli-
cation. Since you may be itching to write your first multimedia networking applica-
tion using RTP, let us now elaborate a little on these two approaches. (The
programming assignment at the end of this chapter will guide you through the cre-
ation of an RTP application.) We’ll do this in the context of unicast communication
(rather than for multicast).

Recall from Chapter 2 that the UDP API requires the sending process to set, for
each UDP segment it sends, the destination IP address and the destination port num-
ber before popping the packet into the UDP socket. The UDP segment will then
wander through the Internet and (if the segment is not lost due to, for example,
router buffer overflow) eventually arrive at the door of the receiving process for the
application. This door is fully addressed by the destination IP address and the desti-
nation port number. In fact, any IP datagram containing this destination IP address
and destination port number will be directed to the receiving process’s UDP door.
(The UDP API also lets the application developer set the UDP source port number;
however, this value has no effect on which process the segment is sent to.) It is
important to note that RTP does not mandate a specific port number. When the
application developer creates an RTP application, the developer specifies the port
numbers for the two sides of the application.

As part of the programming assignment for this chapter, you will write an RTP
server that encapsulates stored video frames within RTP packets. You will do this by
hand; that is, your application will grab a video frame, add the RTP headers to the
frame to create an RTP packet, and then pass the RTP frame to the UDP socket. To
do this, you will need to create placeholder fields for the various RTP headers,
including a sequence number field and a timestamp field. And for each RTP packet
that is created, you will have to set the sequence number and the timestamp appro-
priately. You will explicitly code all of these RTP operations into the sender side of
your application. As shown in Figure 7.11, your API to the network will be the stan-
dard UDP socket API.
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An alternative approach (not done in the programming assignment) is to use a
Java RTP class (or a C RTP library for C programmers) to implement the RTP
operations. With this approach, as shown in Figure 7.12, the application developer
is given the impression that RTP is part of the transport layer, with an RTP/UDP
API between the application layer and the transport layer. Without getting into the
nitty-gritty details (as they are class/library-dependent), when sending a chunk of
media into the API, the sending side of the application needs to provide the inter-
face with the media chunk itself, a payload-type number, an SSRC, and a time-
stamp, along with a destination port number and an IP destination address. We
mention here that the Java Media Framework (JMF) includes a complete RTP
implementation.

7.4.2 RTP Control Protocol (RTCP)

RFC 3550 also specifies RTCP, a protocol that a networked multimedia application
can use in conjunction with RTP. As shown in the multicast scenario in Figure 7.13,
RTCP packets are transmitted by each participant in an RTP session to all other par-
ticipants in the session using IP multicast. For an RTP session, typically there is a
single multicast address and all RTP and RTCP packets belonging to the session use
the multicast address. RTP and RTCP packets are distinguished from each other
through the use of distinct port numbers. (The RTCP port number is set to be equal
to the RTP port number plus one.)

RTCP packets do not encapsulate chunks of audio or video. Instead, RTCP
packets are sent periodically and contain sender and/or receiver reports that
announce statistics that can be useful to the application. These statistics include
number of packets sent, number of packets lost, and interarrival jitter. The RTP
specification [RFC 3550] does not dictate what the application should do with this
feedback information; this is up to the application developer. Senders can use the
feedback information, for example, to modify their transmission rates. The feedback
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information can also be used for diagnostic purposes; for example, receivers can
determine whether problems are local, regional, or global.

RTCP Packet Types

For each RTP stream that a receiver receives as part of a session, the receiver gener-
ates a reception report. The receiver aggregates its reception reports into a single
RTCP packet. The packet is then sent into the multicast tree that connects all the ses-
sion’s participants. The reception report includes several fields, the most important
of which are listed below.

• The SSRC of the RTP stream for which the reception report is being generated.

• The fraction of packets lost within the RTP stream. Each receiver calculates the
number of RTP packets lost divided by the number of RTP packets sent as part
of the stream. If a sender receives reception reports indicating that the receivers
are receiving only a small fraction of the sender’s transmitted packets, it can
switch to a lower encoding rate, with the aim of decreasing network congestion
and improving the reception rate.

• The last sequence number received in the stream of RTP packets.

• The interarrival jitter, which is a smoothed estimate of the variation in the
interarrival time between successive packets in the RTP stream.
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For each RTP stream that a sender is transmitting, the sender creates and trans-
mits RTCP sender report packets. These packets include information about the RTP
stream, including:

• The SSRC of the RTP stream

• The timestamp and wall clock time of the most recently generated RTP packet in
the stream

• The number of packets sent in the stream

• The number of bytes sent in the stream

Sender reports can be used to synchronize different media streams within an
RTP session. For example, consider a video conferencing application for which each
sender generates two independent RTP streams, one for video and one for audio.
The timestamps in these RTP packets are tied to the video and audio sampling
clocks, and are not tied to the wall clock time (i.e., real time). Each RTCP sender
report contains, for the most recently generated packet in the associated RTP stream,
the timestamp of the RTP packet and the wall clock time when the packet was cre-
ated. Thus the RTCP sender report packets associate the sampling clock with the
real-time clock. Receivers can use this association in RTCP sender reports to syn-
chronize the playout of audio and video.

For each RTP stream that a sender is transmitting, the sender also creates and
transmits source description packets. These packets contain information about the
source, such as the e-mail address of the sender, the sender’s name, and the applica-
tion that generates the RTP stream. It also includes the SSRC of the associated RTP
stream. These packets provide a mapping between the source identifier (that is, the
SSRC) and the user/host name.

RTCP packets are stackable; that is, receiver reception reports, sender reports,
and source descriptors can be concatenated into a single packet. The result-
ing packet is then encapsulated into a UDP segment and forwarded into the multi-
cast tree.

RTCP Bandwidth Scaling

You may have observed that RTCP has a potential scaling problem. Consider, for
example, an RTP session that consists of one sender and a large number of receivers.
If each of the receivers periodically generates RTCP packets, then the aggregate
transmission rate of RTCP packets can greatly exceed the rate of RTP packets sent
by the sender. Observe that the amount of RTP traffic sent into the multicast tree
does not change as the number of receivers increases, whereas the amount of RTCP
traffic grows linearly with the number of receivers. To solve this scaling problem,
RTCP modifies the rate at which a participant sends RTCP packets into the multi-
cast tree as a function of the number of participants in the session. Also, since each
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participant sends control packets to everyone else, each participant can estimate the
total number of participants in the session [Friedman 1999].

RTCP attempts to limit its traffic to 5 percent of the session bandwidth. For exam-
ple, suppose there is one sender, which is sending video at a rate of 2 Mbps. Then
RTCP attempts to limit its traffic to 5 percent of 2 Mbps, or 100 kbps, as follows. The
protocol gives 75 percent of this rate, or 75 kbps, to the receivers; it gives the remain-
ing 25 percent of the rate, or 25 kbps, to the sender. The 75 kbps devoted to the
receivers is equally shared among the receivers. Thus, if there are R receivers, then
each receiver gets to send RTCP traffic at a rate of 75/R kbps, and the sender gets to
send RTCP traffic at a rate of 25 kbps. A participant (a sender or receiver) determines
the RTCP packet transmission period by dynamically calculating the average RTCP
packet size (across the entire session) and dividing the average RTCP packet size by
its allocated rate. In summary, the period for transmitting RTCP packets for a sender is

And the period for transmitting RTCP packets for a receiver is

7.4.3 SIP

Imagine a world in which, when you are working on your PC, your phone calls
arrive over the Internet to your PC. When you get up and start walking around, your
new phone calls are automatically routed to your PDA. And when you are driving in
your car, your new phone calls are automatically routed to some Internet appliance
in your car. In this same world, while participating in a conference call, you can
access an address book to call and invite other participants into the conference. The
other participants may be at their PCs, or walking with their PDAs, or driving their
cars—no matter where they are, your invitation is transparently routed to them. In
this same world, when you browse an individual’s homepage, there will be a link
“Call Me”; clicking on this link establishes an Internet phone session between your
PC and the owner of the homepage (wherever that person might be).

In this world, there is no longer a circuit-switched telephone network. Instead,
all calls pass over the Internet—from end to end. In this same world, companies no
longer use private branch exchanges (PBXs), that is, local circuit switches for han-
dling intracompany telephone calls. Instead, the intracompany phone traffic flows
over the company’s high-speed LAN.

All of this may sound like science fiction. And, of course, today’s circuit-
switched networks and PBXs are not going to disappear completely in the near
future [Jiang 2001]. Nevertheless, protocols and products exist to turn this vision
into a reality. Among the most promising protocols in this direction is the Session

T =
⋅ ⋅
number of receivers

.75  .05  session bandwidth
 RTCP packet size)( .avg

T =
⋅ ⋅

number of senders

.25  .05  session bandwidth
 RTCP packet size)( .avg
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Initiation Protocol (SIP), defined in [RFC 3261]. SIP is a lightweight protocol that
does the following:

• It provides mechanisms for establishing calls between a caller and a callee over
an IP network. It allows the caller to notify the callee that it wants to start a call.
It allows the participants to agree on media encodings. It also allows participants
to end calls.

• It provides mechanisms for the caller to determine the current IP address of the
callee. Users do not have a single, fixed IP address because they may be assigned
addresses dynamically (using DHCP) and because they may have multiple IP
devices, each with a different IP address.

• It provides mechanisms for call management, such as adding new media streams
during the call, changing the encoding during the call, inviting new participants
during the call, call transfer, and call holding.

Setting Up a Call to a Known IP Address

To understand the essence of SIP, it is best to take a look at a concrete example. In
this example, Alice is at her PC and she wants to call Bob, who is also working at
his PC. Alice’s and Bob’s PCs are both equipped with SIP-based software for mak-
ing and receiving phone calls. In this initial example, we’ll assume that Alice knows
the IP address of Bob’s PC. Figure 7.14 illustrates the SIP call-establishment
process.

In Figure 7.14, we see that an SIP session begins when Alice sends Bob an
INVITE message, which resembles an HTTP request message. This INVITE mes-
sage is sent over UDP to the well-known port 5060 for SIP. (SIP messages can also
be sent over TCP.) The INVITE message includes an identifier for Bob
(bob@193.64.210.89), an indication of Alice’s current IP address, an indication that
Alice desires to receive audio, which is to be encoded in format AVP 0 (PCM
encoded �-law) and encapsulated in RTP, and an indication that she wants to receive
the RTP packets on port 38060. After receiving Alice’s INVITE message, Bob sends
an SIP response message, which resembles an HTTP response message. This
response SIP message is also sent to the SIP port 5060. Bob’s response includes a
200 OK as well as an indication of his IP address, his desired encoding and packeti-
zation for reception, and his port number to which the audio packets should be sent.
Note that in this example Alice and Bob are going to use different audio-encoding
mechanisms: Alice is asked to encode her audio with GSM whereas Bob is asked to
encode his audio with PCM �-law. After receiving Bob’s response, Alice sends Bob
an SIP acknowledgment message. After this SIP transaction, Bob and Alice can talk.
(For visual convenience, Figure 7.14 shows Alice talking after Bob, but in truth they
would normally talk at the same time.) Bob will encode and packetize the audio as
requested and send the audio packets to port number 38060 at IP address
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167.180.112.24. Alice will also encode and packetize the audio as requested and
send the audio packets to port number 48753 at IP address 193.64.210.89.

From this simple example, we have learned a number of key characteristics of SIP.
First, SIP is an out-of-band protocol: the SIP messages are sent and received in sockets
that are different from those used for sending and receiving the media data. Second,
the SIP messages themselves are ASCII-readable and resemble HTTP messages. Third,
SIP requires all messages to be acknowledged, so it can run over UDP or TCP.

In this example, let’s consider what would happen if Bob does not have a PCM
�-law codec for encoding audio. In this case, instead of responding with 200 OK,
Bob would likely respond with a 600 Not Acceptable and list in the message all the
codecs he can use. Alice would then choose one of the listed codecs and send another
INVITE message, this time advertising the chosen codec. Bob could also simply
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reject the call by sending one of many possible rejection reply codes. (There are
many such codes, including “busy,” “gone,” “payment required,” and “forbidden.”)

SIP Addresses

In the previous example, Bob’s SIP address is sip:bob@193.64.210.89. However, we
expect many—if not most—SIP addresses to resemble e-mail addresses. For example,
Bob’s address might be sip:bob@domain.com. When Alice’s SIP device sends an
INVITE message, the message would include this e-mail-like address; the SIP infra-
structure would then route the message to the IP device that Bob is currently using (as
we’ll discuss below). Other possible forms for the SIP address could be Bob’s legacy
phone number or simply Bob’s first/middle/last name (assuming it is unique).

An interesting feature of SIP addresses is that they can be included in Web
pages, just as people’s e-mail addresses are included in Web pages with the mailto
URL. For example, suppose Bob has a personal homepage, and he wants to pro-
vide a means for visitors to the homepage to call him. He could then simply include
the URL sip:bob@domain.com. When the visitor clicks on the URL, the SIP appli-
cation in the visitor’s device is launched and an INVITE message is sent to Bob.

SIP Messages

In this short introduction to SIP, we’ll not cover all SIP message types and headers.
Instead, we’ll take a brief look at the SIP INVITE message, along with a few com-
mon header lines. Let us again suppose that Alice wants to initiate an IP phone call
to Bob, and this time Alice knows only Bob’s SIP address, bob@domain.com, and
does not know the IP address of the device that Bob is currently using. Then her
message might look something like this:

INVITE sip:bob@domain.com SIP/2.0
Via: SIP/2.0/UDP 167.180.112.24
From: sip:alice@hereway.com
To: sip:bob@domain.com
Call-ID: a2e3a@pigeon.hereway.com
Content-Type: application/sdp
Content-Length: 885

c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0

The INVITE line includes the SIP version, as does an HTTP request message.
Whenever an SIP message passes through an SIP device (including the device that orig-
inates the message), it attaches a Via header, which indicates the IP address of the
device. (We’ll see soon that the typical INVITE message passes through many SIP
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devices before reaching the callee’s SIP application.) Similar to an e-mail message, the
SIP message includes a From header line and a To header line. The message includes a
Call-ID, which uniquely identifies the call (similar to the message-ID in e-mail). It
includes a Content-Type header line, which defines the format used to describe the con-
tent contained in the SIP message. It also includes a Content-Length header line, which
provides the length in bytes of the content in the message. Finally, after a carriage return
and line feed, the message contains the content. In this case, the content provides infor-
mation about Alice’s IP address and how Alice wants to receive the audio.

Name Translation and User Location

In the example in Figure 7.14, we assumed that Alice’s SIP device knew the IP
address where Bob could be contacted. But this assumption is quite unrealistic, not
only because IP addresses are often dynamically assigned with DHCP, but also
because Bob may have multiple IP devices (for example, different devices for his
home, work, and car). So now let us suppose that Alice knows only Bob’s e-mail
address, bob@domain.com, and that this same address is used for SIP-based calls.
In this case, Alice needs to obtain the IP address of the device that the user
bob@domain.com is currently using. To find this out, Alice creates an INVITE mes-
sage that begins with INVITE bob@domain.com SIP/2.0 and sends this message to
an SIP proxy. The proxy will respond with an SIP reply that might include the IP
address of the device that bob@domain.com is currently using. Alternatively, the
reply might include the IP address of Bob’s voicemail box, or it might include a
URL of a Web page (that says “Bob is sleeping. Leave me alone!”). Also, the result
returned by the proxy might depend on the caller: if the call is from Bob’s wife, he
might accept the call and supply his IP address; if the call is from Bob’s mother-in-
law, he might respond with the URL that points to the I-am-sleeping Web page!

Now, you are probably wondering, how can the proxy server determine the cur-
rent IP address for bob@domain.com? To answer this question, we need to say a few
words about another SIP device, the SIP registrar. Every SIP user has an associated
registrar. Whenever a user launches an SIP application on a device, the application
sends an SIP register message to the registrar, informing the registrar of its current
IP address. For example, when Bob launches his SIP application on his PDA, the
application would send a message along the lines of:

REGISTER sip:domain.com SIP/2.0
Via: SIP/2.0/UDP 193.64.210.89
From: sip:bob@domain.com
To: sip:bob@domain.com
Expires: 3600

Bob’s registrar keeps track of Bob’s current IP address. Whenever Bob switches
to a new SIP device, the new device sends a new register message, indicating the
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new IP address. Also, if Bob remains at the same device for an extended period of
time, the device will send refresh register messages, indicating that the most
recently sent IP address is still valid. (In the example above, refresh messages need
to be sent every 3600 seconds to maintain the address at the registrar server.) It is
worth noting that the registrar is analogous to a DNS authoritative name server: the
DNS server translates fixed host names to fixed IP addresses; the SIP registrar trans-
lates fixed human identifiers (for example, bob@domain.com) to dynamic IP
addresses. Often SIP registrars and SIP proxies are run on the same host.

Now let’s examine how Alice’s SIP proxy server obtains Bob’s current IP
address. From the preceding discussion we see that the proxy server simply needs to
forward Alice’s INVITE message to Bob’s registrar/proxy. The registrar/proxy
could then forward the message to Bob’s current SIP device. Finally, Bob, having
now received Alice’s INVITE message, could send an SIP response to Alice.

As an example, consider Figure 7.15, in which jim@umass.edu, currently
working on 217.123.56.89, wants to initiate a Voice over IP (VoIP) session with
keith@upenn.edu, currently working on 197.87.54.21. The following steps are
taken: (1) Jim sends an INVITE message to the umass SIP proxy. (2) The proxy
does a DNS lookup on the SIP registrar upenn.edu (not shown in diagram) and then
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forwards the message to the registrar server. (3) Because keith@upenn.edu is no
longer registered at the upenn registrar, the upenn registrar sends a redirect response,
indicating that it should try keith@eurecom.fr. (4) The umass proxy sends an
INVITE message to the eurecom SIP registrar. (5) The eurecom registrar knows the
IP address of keith@eurecom.fr and forwards the INVITE message to the host
197.87.54.21, which is running Keith’s SIP client. (6–8) An SIP response is sent
back through registrars/proxies to the SIP client on 217.123.56.89. (9) Media is sent
directly between the two clients. (There is also an SIP acknowledgment message,
which is not shown.)

Our discussion of SIP has focused on call initiation for voice calls. SIP, being a
signaling protocol for initiating and ending calls in general, can be used for video
conference calls as well as for text-based sessions. In fact, SIP has become a funda-
mental component in many instant messaging applications. Readers desiring to
learn more about SIP are encouraged to visit Henning Schulzrinne’s SIP Web site
[Schulzrinne-SIP 2007]. In particular, on this site you will find open source software
for SIP clients and servers [SIP Software 2007].

7.4.4 H.323

As an alternative to SIP, H.323 is a popular standard for real-time audio and video
conferencing among end systems on the Internet. As shown in Figure 7.16, the
standard also covers how end systems attached to the Internet communicate with
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telephones attached to ordinary circuit-switched telephone networks. (SIP does this
as well, although we did not discuss it.) The H.323 gatekeeper is a device similar
to an SIP registrar.

The H.323 standard is an umbrella specification that includes the following
specifications:

• A specification for how end points negotiate common audio/video encodings.
Because H.323 supports a variety of audio and video encoding standards, a protocol
is needed to allow the communicating end points to agree on a common encoding.

• A specification for how audio and video chunks are encapsulated and sent over
the network. In particular, H.323 mandates RTP for this purpose.

• A specification for how end points communicate with their respective gatekeepers.

• A specification for how Internet phones communicate through a gateway with
ordinary phones in the PSTN.

Minimally, each H.323 end point must support the G.711 speech compression
standard. G.711 uses PCM to generate digitized speech at either 56 kbps or 64 kbps.
Although H.323 requires every end point to be voice capable (through G.711), video
capabilities are optional. Because video support is optional, manufacturers of termi-
nals can sell simpler speech terminals as well as more complex terminals that sup-
port both audio and video. Video capabilities for an H.323 end point are optional.
However, if an end point does support video, then it must (at the very least) support
the QCIF H.261 (176 x 144 pixels) video standard.

H.323 is a comprehensive umbrella standard, which, in addition to the stan-
dards and protocols described above, mandates an H.245 control protocol, a Q.931
signaling channel, and an RAS protocol for registration with the gatekeeper.

We conclude this section by highlighting some of the most important differ-
ences between H.323 and SIP.

• H.323 is a complete, vertically integrated suite of protocols for multimedia con-
ferencing: signaling, registration, admission control, transport, and codecs.

• SIP, on the other hand, addresses only session initiation and management and is
a single component. SIP works with RTP but does not mandate it. It works with
G.711 speech codecs and QCIF H.261 video codecs but does not mandate them.
It can be combined with other protocols and services.

• H.323 comes from the ITU (telephony), whereas SIP comes from the IETF and
borrows many concepts from the Web, DNS, and Internet e-mail.

• H.323, being an umbrella standard, is large and complex. SIP uses the KISS prin-
ciple: keep it simple, stupid.

For an excellent discussion of H.323, SIP, and VoIP in general, see [Hersent 2000].
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7.5 Providing Multiple Classes of Service

In previous sections we learned how sequence numbers, timestamps, FEC, RTP,
and H.323 can be used by multimedia applications in today’s Internet. CDNs
represent a system-wide solution for distributing multimedia content. But are these
techniques alone enough to support reliable and robust multimedia applications,
such as an IP telephony service that is equivalent to that in today’s telephone net-
work? Before answering this question, let’s recall again that today’s Internet pro-
vides a best-effort service to all of its applications; that is, it does not make any
promises about the QoS an application will receive. An application will receive
whatever level of performance (for example, end-to-end packet delay and loss) that
the network is able to provide at that moment. Recall also that today’s public Inter-
net does not allow delay-sensitive multimedia applications to request any special
treatment. Because every packet, including delay-sensitive audio and video pack-
ets, is treated equally at the routers, all that’s required to ruin the quality of an
ongoing IP telephone call is enough interfering traffic (that is, network congestion)
to noticeably increase the delay and loss seen by an IP telephone call.

But if the goal is to provide a service model that provides something more than
the one-size-fits-all best-effort service in today’s Internet, exactly what type of serv-
ice is to be provided? One simple enhanced service model is to divide traffic into
classes, and provide different levels of service to these different classes of traffic.
For example, an ISP might well want to provide a higher class of service to delay-
sensitive Voice over IP or teleconferencing traffic (and charge more for this service!)
than to elastic traffic such as FTP or HTTP. We’re all familiar with different classes
of service from our everyday lives—first-class airline passengers get better service
than business class passengers, who in turn get better service than those of us who
fly economy class; VIPs are provided immediate entry to events while everyone else
waits in line; elders are revered in some countries and provided seats of honor and
the finest food at a table.

It’s important to note that such differential service is provided among aggre-
gates of traffic, i.e., among classes of traffic, not among individual connections. For
example, all first-class passengers are handled the same (with no first-class passen-
ger receiving any better treatment than any other first-class passenger), just as all
VoIP packets would receive the same treatment within the network, independent of
the particular end-end connection to which they belong. As we will see, by dealing
with a small number of traffic aggregates, rather than a large number of individual
connections, the new network mechanisms required to provide better-than-best
service can be kept relatively simple.

The early Internet designers clearly had this notion of multiple classes of service
in mind. Recall the type-of-service (ToS) field in the IPv4 header in Figure 4.13.
IEN123 [ISI 1979] describes the ToS field also present in an ancestor of the IPv4 data-
gram as follows: “The Type of Service [field] provides an indication of the abstract
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parameters of the quality of service desired. These parameters are to be used to guide
the selection of the actual service parameters when transmitting a datagram through a
particular network. Several networks offer service precedence, which somehow treats
high precedence traffic as more important that other traffic.” Even three decades ago,
the vision of providing different levels of service to different levels of traffic was
clear! However, it’s taken us an equally long period of time to realize this vision.

We’ll begin our study in Section 7.5.1 by considering several scenarios that will
motivate the need for specific mechanisms for supporting multiple classes of serv-
ice. We’ll then cover two important topics—link-level scheduling and packet classi-
fication/policing in Section 7.5.2. In Section 7.5.3, we’ll cover Diffserv—the
Internet’s current standard for providing differentiated service.

7.5.1 Motivating Scenarios

Figure 7.17 shows a simple network scenario. Suppose that two application packet
flows originate on Hosts H1 and H2 on one LAN and are destined for Hosts H3 and
H4 on another LAN. The routers on the two LANs are connected by a 1.5 Mbps
link. Let’s assume the LAN speeds are significantly higher than 1.5 Mbps, and focus
on the output queue of router R1; it is here that packet delay and packet loss will
occur if the aggregate sending rate of H1 and H2 exceeds 1.5 Mbps. Let’s now con-
sider several scenarios, each of which will provide us with important insight into the
need for specific mechanisms for supporting multiple classes of service.
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Scenario 1: A 1 Mbps Audio Application and an FTP Transfer

Scenario 1 is illustrated in Figure 7.18. Here, a 1 Mbps audio application (for exam-
ple, a CD-quality audio call) shares the 1.5 Mbps link between R1 and R2 with an
FTP application that is transferring a file from H2 to H4. In the best-effort Internet,
the audio and FTP packets are mixed in the output queue at R1 and (typically) trans-
mitted in a first-in-first-out (FIFO) order. In this scenario, a burst of packets from
the FTP source could potentially fill up the queue, causing IP audio packets to be
excessively delayed or lost due to buffer overflow at R1. How should we solve this
potential problem? Given that the FTP application does not have time constraints,
our intuition might be to give strict priority to audio packets at R1. Under a strict
priority scheduling discipline, an audio packet in the R1 output buffer would always
be transmitted before any FTP packet in the R1 output buffer. The link from R1 to
R2 would look like a dedicated link of 1.5 Mbps to the audio traffic, with FTP traf-
fic using the R1-to-R2 link only when no audio traffic is queued.

In order for R1 to distinguish between the audio and FTP packets in its queue,
each packet must be marked as belonging to one of these two classes of traffic. This
was the original goal of the type-of-service (ToS) field in IPv4. As obvious as this
might seem, this then is our first insight into mechanisms needed to provide multi-
ple classes of traffic:

Insight 1: Packet marking allows a router to distinguish among packets
belonging to different classes of traffic.

7.5 • PROVIDING MULTIPLE CLASSES OF SERVICE 641

R1

1.5 Mbps link R2

H2

H1

H4

H3

Figure 7.18 � Competing audio and FTP applications

CH07_589-678.qxd  1/1/70  17:03  Page 641



Scenario 2: A 1 Mbps Audio Application and a High-Priority FTP
Transfer

Our second scenario is only slightly different from scenario 1. Suppose now that
the FTP user has purchased “platinum” (that is, high-priced) Internet access from
its ISP, while the audio user has purchased cheap, low-budget Internet service that
costs only a minuscule fraction of platinum service. Should the cheap user’s audio
packets be given priority over FTP packets in this case? Arguably not. In this case,
it would seem more reasonable to distinguish packets on the basis of the sender’s
IP address. More generally, we see that it is necessary for a router to classify
packets according to some criteria. This then calls for a slight modification to
insight 1:

Insight 1 (modified): Packet classification allows a router to distinguish
among packets belonging to different classes of traffic.

Explicit packet marking is one way in which packets may be distinguished.
However, the marking carried by a packet does not, by itself, mandate that the
packet will receive a given quality of service. Marking is but one mechanism for dis-
tinguishing packets. The manner in which a router distinguishes among packets by
treating them differently is a policy decision.

Scenario 3: A Misbehaving Audio Application and an FTP Transfer

Suppose now that somehow (by use of mechanisms that we’ll study in subsequent
sections) the router knows it should give priority to packets from the 1 Mbps audio
application. Since the outgoing link speed is 1.5 Mbps, even though the FTP pack-
ets receive lower priority, they will still, on average, receive 0.5 Mbps of transmis-
sion service. But what happens if the audio application starts sending packets at a
rate of 1.5 Mbps or higher (either maliciously or due to an error in the application)?
In this case, the FTP packets will starve, that is, they will not receive any service on
the R1-to-R2 link. Similar problems would occur if multiple applications (for exam-
ple, multiple audio calls), all with the same priority, were sharing a link’s band-
width; one noncompliant flow could degrade and ruin the performance of the other
flows. Ideally, one wants a degree of isolation among classes of traffic and also pos-
sibly among flows within the same traffic class, in order to protect one flow from
another, misbehaving flow. The notion of protecting individual flows within a given
traffic class from each other contradicts our earlier observation that packets from all
flows within a class should be treated the same. In practice, packets within a class
are indeed treated the same at routers within the network core. However, at the edge
of the network, packets within a given flow may be monitored to ensure that the
aggregate rate of an individual flow does not exceed a given value.
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These considerations give rise to our second insight:

Insight 2: It is desirable to provide a degree of isolation among traffic classes
and among flows, so that one class or flow is not adversely affected by another
that misbehaves.

In the following section, we will examine several specific mechanisms for pro-
viding this isolation among traffic classes or flows. We note here that two broad
approaches can be taken. First, it is possible to police traffic, as shown in Figure
7.19. If a traffic class or flow must meet certain criteria (for example, that the audio
flow not exceed a peak rate of 1 Mbps), then a policing mechanism can be put into
place to ensure that these criteria are indeed observed. If the policed application
misbehaves, the policing mechanism will take some action (for example, drop or
delay packets that are in violation of the criteria) so that the traffic actually entering
the network conforms to the criteria. The leaky bucket mechanism that we examine
in the following section is perhaps the most widely used policing mechanism.
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In Figure 7.19, the packet classification and marking mechanism (Observation 1)
and the policing mechanism (Observation 2) are co-located at the edge of the net-
work, either in the end system or at an edge router.

An alternative approach for providing isolation among traffic classes or flows
is for the link-level packet-scheduling mechanism to explicitly allocate a fixed
amount of link bandwidth to each class or flow. For example, the audio flow could
be allocated 1 Mbps at R1, and the FTP flow could be allocated 0.5 Mbps. In this
case, the audio and FTP flows see a logical link with capacity 1.0 and 0.5 Mbps,
respectively, as shown in Figure 7.20.

With strict enforcement of the link-level allocation of bandwidth, a class or
flow can use only the amount of bandwidth that has been allocated; in particular,
it cannot utilize bandwidth that is not currently being used by others. For exam-
ple, if the audio flow goes silent (for example, if the speaker pauses and generates
no audio packets), the FTP flow would still not be able to transmit more than 0.5
Mbps over the R1-to-R2 link, even though the audio flow’s 1 Mbps bandwidth
allocation is not being used at that moment. It is therefore desirable to use band-
width as efficiently as possible, allowing one class or flow to use another’s unused
bandwidth at any given point in time. This consideration gives rise to our third
insight:

Insight 3: While providing isolation among classes or flows, it is desirable
to use resources (for example, link bandwidth and buffers) as efficiently as
possible.
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7.5.2 Scheduling and Policing Mechanisms

Now that we have gained insight into the mechanisms needed to provide different
classes of service, let’s now consider two of the most important mechanisms—
scheduling and policing—in detail.

Scheduling Mechanisms

Recall from our discussion in Section 1.3 and Section 4.3 that packets belonging to
various network flows are multiplexed and queued for transmission at the output
buffers associated with a link. The manner in which queued packets are selected for
transmission on the link is known as the link-scheduling discipline. Let us now
consider several of the most important link-scheduling disciplines in more detail.

First-In-First-Out (FIFO)

Figure 7.21 shows the queuing model abstractions for the FIFO link-scheduling dis-
cipline. Packets arriving at the link output queue wait for transmission if the link is
currently busy transmitting another packet. If there is not sufficient buffering space
to hold the arriving packet, the queue’s packet-discarding policy then determines
whether the packet will be dropped (lost) or whether other packets will be removed
from the queue to make space for the arriving packet. In our discussion below we
will ignore packet discard. When a packet is completely transmitted over the out-
going link (that is, receives service) it is removed from the queue.

The FIFO (also known as first-come-first-served, or FCFS) scheduling disci-
pline selects packets for link transmission in the same order in which they arrived at
the output link queue. We’re all familiar with FIFO queuing from bus stops (partic-
ularly in England, where queuing seems to have been perfected) or other service
centers, where arriving customers join the back of the single waiting line, remain in
order, and are then served when they reach the front of the line.

Figure 7.22 shows the FIFO queue in operation. Packet arrivals are indicated
by numbered arrows above the upper timeline, with the number indicating the order
in which the packet arrived. Individual packet departures are shown below the lower
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timeline. The time that a packet spends in service (being transmitted) is indicated by
the shaded rectangle between the two timelines. Because of the FIFO discipline,
packets leave in the same order in which they arrived. Note that after the departure
of packet 4, the link remains idle (since packets 1 through 4 have been transmitted
and removed from the queue) until the arrival of packet 5.

Priority Queuing

Under priority queuing, packets arriving at the output link are classified into priority
classes at the output queue, as shown in Figure 7.23. As discussed in the previous sec-
tion, a packet’s priority class may depend on an explicit marking that it carries in its
packet header (for example, the value of the ToS bits in an IPv4 packet), its source or
destination IP address, its destination port number, or other criteria. Each priority class
typically has its own queue. When choosing a packet to transmit, the priority queuing
discipline will transmit a packet from the highest priority class that has a nonempty
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queue (that is, has packets waiting for transmission). The choice among packets in the
same priority class is typically done in a FIFO manner.

Figure 7.24 illustrates the operation of a priority queue with two priority
classes. Packets 1, 3, and 4 belong to the high-priority class, and packets 2 and 5
belong to the low-priority class. Packet 1 arrives and, finding the link idle, begins
transmission. During the transmission of packet 1, packets 2 and 3 arrive and are
queued in the low- and high-priority queues, respectively. After the transmission
of packet 1, packet 3 (a high-priority packet) is selected for transmission over
packet 2 (which, even though it arrived earlier, is a low-priority packet). At the end
of the transmission of packet 3, packet 2 then begins transmission. Packet 4 (a
high-priority packet) arrives during the transmission of packet 2 (a low-priority
packet). Under a nonpreemptive priority queuing discipline, the transmission of
a packet is not interrupted once it has begun. In this case, packet 4 queues for
transmission and begins being transmitted after the transmission of packet 2 is
completed.

Round Robin and Weighted Fair Queuing (WFQ)

Under the round robin queuing discipline, packets are sorted into classes as with
priority queuing. However, rather than there being a strict priority of service among
classes, a round robin scheduler alternates service among the classes. In the simplest
form of round robin scheduling, a class 1 packet is transmitted, followed by a class
2 packet, followed by a class 1 packet, followed by a class 2 packet, and so on. A
so-called work-conserving queuing discipline will never allow the link to remain
idle whenever there are packets (of any class) queued for transmission. A work-
conserving round robin discipline that looks for a packet of a given class but finds
none will immediately check the next class in the round robin sequence.

Figure 7.25 illustrates the operation of a two-class round robin queue. In
this example, packets 1, 2, and 4 belong to class 1, and packets 3 and 5 belong to the
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second class. Packet 1 begins transmission immediately upon arrival at the output
queue. Packets 2 and 3 arrive during the transmission of packet 1 and thus queue for
transmission. After the transmission of packet 1, the link scheduler looks for a class
2 packet and thus transmits packet 3. After the transmission of packet 3, the sched-
uler looks for a class 1 packet and thus transmits packet 2. After the transmission of
packet 2, packet 4 is the only queued packet; it is thus transmitted immediately after
packet 2.

A generalized abstraction of round robin queuing that has found considerable
use in QoS architectures is the so-called weighted fair queuing (WFQ) discipline
[Demers 1990; Parekh 1993]. WFQ is illustrated in Figure 7.26. Arriving packets
are classified and queued in the appropriate per-class waiting area. As in round robin
scheduling, a WFQ scheduler will serve classes in a circular manner—first serving
class 1, then serving class 2, then serving class 3, and then (assuming there are three
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classes) repeating the service pattern. WFQ is also a work-conserving queuing
discipline and thus will immediately move on to the next class in the service
sequence when it finds an empty class queue.

WFQ differs from round robin in that each class may receive a differential
amount of service in any interval of time. Specifically, each class, i, is assigned a
weight, wi. Under WFQ, during any interval of time during which there are class i
packets to send, class i will then be guaranteed to receive a fraction of service equal
to wi /(∑wj), where the sum in the denominator is taken over all classes that also have
packets queued for transmission. In the worst case, even if all classes have queued
packets, class i will still be guaranteed to receive a fraction wi /(∑wj) of the band-
width. Thus, for a link with transmission rate R, class i will always achieve a
throughput of at least R � wi /(∑wj). Our description of WFQ has been an idealized
one, as we have not considered the fact that packets are discrete units of data and a
packet’s transmission will not be interrupted to begin transmission of another
packet; [Demers 1990] and [Parekh 1993] discuss this packetization issue. As we
will see in the following sections, WFQ plays a central role in QoS architectures. It
is also available in today’s router products [Cisco QoS 2007].

Policing: The Leaky Bucket

One of our insights from Section 7.5.1 was that policing, the regulation of the rate at
which a class or flow (we will assume the unit of policing is a flow in our discussion
below) is allowed to inject packets into the network, is an important QoS mecha-
nism. But what aspects of a flow’s packet rate should be policed? We can identify
three important policing criteria, each differing from the other according to the time
scale over which the packet flow is policed:

• Average rate. The network may wish to limit the long-term average rate (packets
per time interval) at which a flow’s packets can be sent into the network. A
crucial issue here is the interval of time over which the average rate will be
policed. A flow whose average rate is limited to 100 packets per second is
more constrained than a source that is limited to 6,000 packets per minute, even
though both have the same average rate over a long enough interval of time. For
example, the latter constraint would allow a flow to send 1,000 packets in a given
second-long interval of time, while the former constraint would disallow this
sending behavior.

• Peak rate. While the average-rate constraint limits the amount of traffic that can
be sent into the network over a relatively long period of time, a peak-rate con-
straint limits the maximum number of packets that can be sent over a shorter
period of time. Using our example above, the network may police a flow at an
average rate of 6,000 packets per minute, while limiting the flow’s peak rate to
1,500 packets per second.

7.5 • PROVIDING MULTIPLE CLASSES OF SERVICE 649

CH07_589-678.qxd  28/2/07  4:42 PM  Page 649



• Burst size. The network may also wish to limit the maximum number of packets
(the “burst” of packets) that can be sent into the network over an extremely short
interval of time. In the limit, as the interval length approaches zero, the burst size
limits the number of packets that can be instantaneously sent into the network.
Even though it is physically impossible to instantaneously send multiple packets
into the network (after all, every link has a physical transmission rate that cannot
be exceeded!), the abstraction of a maximum burst size is a useful one.

The leaky bucket mechanism is an abstraction that can be used to characterize
these policing limits. As shown in Figure 7.27, a leaky bucket consists of a bucket
that can hold up to b tokens. Tokens are added to this bucket as follows. New tokens,
which may potentially be added to the bucket, are always being generated at a rate
of r tokens per second. (We assume here for simplicity that the unit of time is a sec-
ond.) If the bucket is filled with less than b tokens when a token is generated, the
newly generated token is added to the bucket; otherwise the newly generated token
is ignored, and the token bucket remains full with b tokens.

Let us now consider how the leaky bucket can be used to police a packet flow.
Suppose that before a packet is transmitted into the network, it must first remove a
token from the token bucket. If the token bucket is empty, the packet must wait for a
token. (An alternative is for the packet to be dropped, although we will not consider
that option here.) Let us now consider how this behavior polices a traffic flow. Because
there can be at most b tokens in the bucket, the maximum burst size for a leaky-bucket-
policed flow is b packets. Furthermore, because the token generation rate is r, the max-
imum number of packets that can enter the network of any interval of time of length t
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is rt + b. Thus, the token-generation rate, r, serves to limit the long-term average rate at
which packets can enter the network. It is also possible to use leaky buckets (specifi-
cally, two leaky buckets in series) to police a flow’s peak rate in addition to the long-
term average rate; see the homework problems at the end of this chapter.

Leaky Bucket + Weighted Fair Queuing = Provable Maximum Delay in a
Queue

We’ll soon examine the so-called Intserv and Diffserv approaches for providing
quality of service in the Internet. We’ll see that both leaky bucket policing and WFQ
scheduling can play an important role. Let us thus close this section by considering
a router’s output link that multiplexes n flows, each policed by a leaky bucket with
parameters bi and ri, i = 1, . . . , n, using WFQ scheduling. We use the term flow here
loosely to refer to the set of packets that are not distinguished from each other by
the scheduler. In practice, a flow might be comprised of traffic from a single end-to-
end connection or a collection of many such connections, see Figure 7.28.

Recall from our discussion of WFQ that each flow, i, is guaranteed to receive a
share of the link bandwidth equal to at least R � wi /(∑wj), where R is the transmis-
sion rate of the link in packets/sec. What then is the maximum delay that a packet
will experience while waiting for service in the WFQ (that is, after passing through
the leaky bucket)? Let us focus on flow 1. Suppose that flow 1’s token bucket is ini-
tially full. A burst of b1 packets then arrives to the leaky bucket policer for flow 1.
These packets remove all of the tokens (without wait) from the leaky bucket and
then join the WFQ waiting area for flow 1. Since these b1 packets are served at a rate
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of at least R � wi /(∑wj) packet/sec, the last of these packets will then have a maxi-
mum delay, dmax, until its transmission is completed, where

The rationale behind this formula is that if there are b1 packets in the queue and
packets are being serviced (removed) from the queue at a rate of at least R � w1/
(∑wj) packets per second, then the amount of time until the last bit of the last packet
is transmitted cannot be more than b1/(R � w1/(∑wj)). A homework problem asks you
to prove that as long as r1 < R � w1/(∑wj), then dmax is indeed the maximum delay
that any packet in flow 1 will ever experience in the WFQ queue.

7.5.3 Diffserv

The Internet Diffserv architecture [RFC 2475; Kilkki 1999] aims to provide service
differentiation—that is, the ability to handle different “classes” of traffic in different
ways within the Internet—and to do so in a scalable and flexible manner. The need
for scalability arises from the fact that hundreds of thousands of simultaneous
source-destination traffic flows may be present at a backbone router of the Internet.
We will see shortly that this need is met by placing only simple functionality within
the network core, with more complex control operations being implemented at the
edge of the network. The need for flexibility arises from the fact that new service
classes may arise and old service classes may become obsolete. The Diffserv archi-
tecture is flexible in the sense that it does not define specific services or service
classes. Instead, Diffserv provides the functional components, that is, the pieces of a
network architecture, with which such services can be built. Let us now examine
these components in detail.

Differentiated Services: A Simple Scenario

To set the framework for defining the architectural components of the differentiated
service (Diffserv) model, let’s begin with the simple network shown in Figure 7.29.
In this section, we describe one possible use of the Diffserv components. Many
other variations are possible, as described in RFC 2475. Our goal here is to provide
an introduction to the key aspects of Diffserv, rather than to describe the architec-
tural model in exhaustive detail. Readers interested in learning more about Diffserv
are encouraged to see the comprehensive book [Kilkki 1999].

The Diffserv architecture consists of two sets of functional elements:

• Edge functions: packet classification and traffic conditioning. At the incoming
edge of the network (that is, at either a Diffserv-capable host that generates
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traffic or at the first Diffserv-capable router that the traffic passes through), arriv-
ing packets are marked. More specifically, the differentiated service (DS) field
of the packet header is set to some value. For example, in Figure 7.29, packets
being sent from H1 to H3 might be marked at R1, while packets being sent from
H2 to H4 might be marked at R2. The mark that a packet receives identifies the
class of traffic to which it belongs. Different classes of traffic will then receive
different service within the core network. 

• Core function: forwarding. When a DS-marked packet arrives at a Diffserv-
capable router, the packet is forwarded onto its next hop according to the so-
called per-hop behavior associated with that packet’s class. The per-hop
behavior influences how a router’s buffers and link bandwidth are shared among
the competing classes of traffic. A crucial tenet of the Diffserv architecture is that
a router’s per-hop behavior will be based only on packet markings, that is, the
class of traffic to which a packet belongs. Thus, if packets being sent from H1 to
H3 in Figure 7.29 receive the same marking as packets being sent from H2 to
H4, then the network routers treat these packets as an aggregate, without distin-
guishing whether the packets originated at H1 or H2. For example, R3 would not
distinguish between packets from H1 and H2 when forwarding these packets on
to R4. Thus, the differentiated services architecture obviates the need to keep
router state for individual source-destination pairs—an important consideration
in meeting the scalability requirement discussed at the beginning of this section.
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An analogy might prove useful here. At many large-scale social events (for
example, a large public reception, a large dance club or discothèque, a concert, or a
football game), people entering the event receive a pass of one type or another: VIP
passes for Very Important People; over-21 passes for people who are 21 years old or
older (for example, if alcoholic drinks are to be served); backstage passes at con-
certs; press passes for reporters; even an ordinary pass for the Ordinary Person.
These passes are typically distributed upon entry to the event, that is, at the edge of
the event. It is here at the edge where computationally intensive operations, such as
paying for entry, checking for the appropriate type of invitation, and matching an
invitation against a piece of identification, are performed. Furthermore, there may
be a limit on the number of people of a given type that are allowed into an event. If
there is such a limit, people may have to wait before entering the event. Once inside
the event, one’s pass allows one to receive differentiated service at many locations
around the event—a VIP is provided with free drinks, a better table, free food, entry
to exclusive rooms, and fawning service. Conversely, an ordinary person is excluded
from certain areas, pays for drinks, and receives only basic service. In both cases,
the service received within the event depends solely on the type of one’s pass. More-
over, all people within a class are treated alike.

Diffserv Traffic Classification and Conditioning

Figure 7.30 provides a logical view of the classification and marking functions
within the edge router. Packets arriving to the edge router are first classified. The
classifier selects packets based on the values of one or more packet header fields
(for example, source address, destination address, source port, destination port, and
protocol ID) and steers the packet to the appropriate marking function. A packet’s
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mark is carried within the DS field [RFC 3260] in the IPv4 or IPv6 packet header.
The definition of the DS field is intended to supersede the earlier definitions of the
IPv4 type-of-service field and the IPv6 traffic class fields that we discussed in
Chapter 4. 

In some cases, an end user may have agreed to limit its packet-sending rate to
conform to a declared traffic profile. The traffic profile might contain a limit on the
peak rate, as well as the burstiness of the packet flow, as we saw previously with the
leaky bucket mechanism. As long as the user sends packets into the network in a
way that conforms to the negotiated traffic profile, the packets receive their priority
marking and are forwarded along their route to the destination. On the other hand, if
the traffic profile is violated, out-of-profile packets might be marked differently,
might be shaped (for example, delayed so that a maximum rate constraint would be
observed), or might be dropped at the network edge. The role of the metering func-
tion, shown in Figure 7.30, is to compare the incoming packet flow with the negoti-
ated traffic profile and to determine whether a packet is within the negotiated traffic
profile. The actual decision about whether to immediately remark, forward, delay,
or drop a packet is a policy issue determined by the network administrator and is not
specified in the Diffserv architecture. 

Per-Hop Behaviors

So far, we have focused on the edge functions in the Diffserv architecture. The second
key component of the Diffserv architecture involves the per-hop behavior (PHB) per-
formed by Diffserv-capable routers. PHB is rather cryptically, but carefully, defined as
“a description of the externally observable forwarding behavior of a Diffserv node
applied to a particular Diffserv behavior aggregate” [RFC 2475]. Digging a little deeper
into this definition, we can see several important considerations embedded within it:

• A PHB can result in different classes of traffic receiving different performance
(that is, different externally observable forwarding behaviors).

• While a PHB defines differences in performance (behavior) among classes, it
does not mandate any particular mechanism for achieving these behaviors. As long
as the externally observable performance criteria are met, any implementation
mechanism and any buffer/bandwidth allocation policy can be used. For example, a
PHB would not require that a particular packet-queuing discipline (for example, a
priority queue versus a WFQ queue versus a FCFS queue) be used to achieve a par-
ticular behavior. The PHB is the end, to which resource allocation and implementa-
tion mechanisms are the means.

• Differences in performance must be observable and hence measurable.

Currently, two PHBs have been defined: an expedited forwarding (EF) PHB
[RFC 3246] and an assured forwarding (AF) PHB [RFC 2597].
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• The expedited forwarding PHB specifies that the departure rate of a class of
traffic from a router must equal or exceed a configured rate. That is, during any
interval of time, the class of traffic can be guaranteed to receive enough band-
width so that the output rate of the traffic equals or exceeds this minimum con-
figured rate. Note that the EF per-hop behavior implies some form of isolation
among traffic classes, as this guarantee is made independently of the traffic inten-
sity of any other classes that are arriving to a router. Thus, even if the other
classes of traffic are overwhelming router and link resources, enough of those
resources must still be made available to the class to ensure that it receives its
minimum-rate guarantee. EF thus provides a class with the simple abstraction of
a link with a minimum guaranteed link bandwidth.

• The assured forwarding PHB is more complex. AF divides traffic into four
classes, where each AF class is guaranteed to be provided with some minimum
amount of bandwidth and buffering. Within each class, packets are further parti-
tioned into one of three drop preference categories. When congestion occurs
within an AF class, a router can then discard (drop) packets based on their drop
preference values. See [RFC 2597] for details. By varying the amount of
resources allocated to each class, an ISP can provide different levels of perform-
ance to the different AF traffic classes.

Diffserv Retrospective

For the past 20 years there have been numerous attempts (for the most part,
unsuccessful) to introduce QoS into packet-switched networks. The various
attempts have failed so far more for economic and legacy reasons that because of
technical reasons. These attempts include end-to-end ATM networks and TCP/IP
networks. Let’s take a look at a few of the issues involved in the context of Diffserv
(which we will study briefly in the following section).

So far we have implicitly assumed that Diffserv is deployed within a single
administrative domain. The more typical case is where an end-to-end service must
be fashioned from multiple ISPs sitting between communicating end systems. In
order to provide end-to-end Diffserv service, all the ISPs between the end systems
not only must provide this service, but most also cooperate and make settlements in
order to offer end customers true end-end service. Without this kind of cooperation,
ISPs directly selling Diffserv service to customers will find themselves repeatedly
saying: “Yes, we know you paid extra, but we don’t have a service agreement with
one of our higher-tier ISPs. I’m sorry that there were many gaps in your VoIP call!”

Even within a single administrative domain, Diffserv alone is not enough to
provide quality of service guarantees to a particular class of service. Diffserv only
allows different classes of traffic to receive different levels of performance. If a net-
work is severely under-dimensioned, even the high-priority class of traffic may
receive unacceptably bad performance. Thus, to be effective, Diffserv must be cou-
pled with proper network dimensioning (see Section 7.3.5). Diffserv can, however,
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make an ISP’s investment in network capacity go farther. By making resources
available to high-priority (and high-paying) classes of traffic whenever needed
(at the expense of the lower-priority classes of traffic), the ISP can deliver a high
level of performance to these high-priority classes. When these resources are not
needed by the high-priority classes, they can be used by the lower-priority traffic
classes (who have presumably paid less for this lower class of service).

Another concern with these advanced services is the need to police and possi-
bly shape traffic, which may turn out to be complex and costly. One also needs to
bill the services differently, most likely by volume rather than with a fixed monthly
fee as currently done by most ISPs—another costly requirement for the ISP. Finally,
if Diffserv were actually in place and the network ran at only moderate load, most
of the time there would be no perceived difference between a best-effort service and
a Diffserv service. Indeed, today, end-to-end delay is usually dominated by access
rates and router hops rather than by queuing delays in the routers. Imagine the
unhappy Diffserv customer who has paid for premium service but finds that the
best-effort service being provided to others almost always has the same performance
as premium service!

7.6 Providing Quality of Service Guarantees

In the previous section we have seen that packet marking and policing, traffic isola-
tion, and link-level scheduling can provide one class of service with better perform-
ance than another. Under certain scheduling disciplines, such as priority scheduling,
the lower classes of traffic are essentially “invisible” to the highest-priority class of
traffic. With proper network dimensioning, the highest class of service can indeed
achieve extremely low packet loss and delay—essentially circuit-like performance.
But can the network guarantee that an on-going flow in a high-priority traffic class
will continue to receive such service throughout the flow’s duration using only the
mechanisms that we have described so far? It can not. In this section, we’ll see why
yet additional network mechanisms and protocols are needed to provide quality of
service guarantees.

7.6.1 A Motivating Example

Let’s return to our scenario from section 7.5.1 and consider two 1 Mbps audio appli-
cations transmitting their packets over the 1.5 Mbps link, as shown in Figure 7.31.
The combined data rate of the two flows (2 Mbps) exceeds the link capacity. Even
with classification and marking, isolation of flows, and sharing of unused band-
width, (of which there is none), this is clearly a losing proposition. There is simply
not enough bandwidth to accommodate the needs of both applications at the same
time. If the two applications equally share the bandwidth, each would receive only
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0.75 Mbps. Looked at another way, each application would lose 25 percent of its
transmitted packets. This is such an unacceptably low QoS that both audio applica-
tions are completely unusable; there’s no need even to transmit any audio packets in
the first place.

Given that the two applications in Figure 7.31 cannot both be satisfied simulta-
neously, what should the network do? Allowing both to proceed with an unusable
QoS wastes network resources on application flows that ultimately provide no utility
to the end user. The answer is hopefully clear—one of the application flows should
be blocked (i.e., denied access to the network), while the other should be allowed to
proceed on, using the full 1 Mbps needed by the application. The telephone network
is an example of a network that performs such call blocking—if the required
resources (an end-to-end circuit in the case of the telephone network) cannot be allo-
cated to the call, the call is blocked (prevented from entering the network) and a busy
signal is returned to the user. In our example, there is no gain in allowing a flow into
the network if it will not receive a sufficient QoS to be considered usable. Indeed,
there is a cost to admitting a flow that does not receive its needed QoS, as network
resources are being used to support a flow that provides no utility to the end user.

By explicitly admitting or blocking flows based on their resource requirements,
and the source-requirements of already-admitted flows, the network can guarantee
that admitted flows will be able to receive their requested QoS. Implicit with the
need to provide a guaranteed QoS to a flow is the need for the flow to declare its
QoS requirements. This process of having a flow declare its QoS requirement, and
then having the network either accept the flow (at the required QoS) or block the
flow is referred to as the call admission process. This then is our fourth insight
(in addition to the three earlier insights from Section 7.5.1) into the mechanisms
needed to provide QoS.
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Insight 4: If sufficient resources will not always be available, and QoS is to be
guaranteed, a call admission process is needed in which flows declare their
QoS requirements and are then either admitted to the network (at the required
QoS) or blocked from the network (if the required QoS cannot be provided by
the network).

7.6.2 Resource Reservation, Call Admission, Call Setup

Our motivating example highlights the need for several new network mechanisms
and protocols if a call (an end-end flow) is to be guaranteed a given quality of serv-
ice once it begins:

• Resource reservation. The only way to guarantee that a call will have the
resources (link bandwidth, buffers) needed to meet its desired QoS is to explic-
itly allocate those resources to the call—a process known in networking parlance
as resource reservation. Once resources are reserved, the call has on-demand
access to these resources throughout its duration, regardless of the demands of
all other calls. If a call reserves and receives a guarantee of x Mbps of link band-
width, and never transmits at a rate greater than x, the call will see loss- and
delay-free performance.

• Call admission. If resources are to be reserved, then the network must have a
mechanism for calls to request and reserve resources—a process known as call
admission. Since resources are not infinite, a call making a call admission
request will be denied admission, i.e., be blocked, if the requested resources are
not available. Such a call admission is performed by the telephone network—we
request resources when we dial a number. If the circuits (TDMA slots) needed to
complete the call are available, the circuits are allocated and the call is com-
pleted. If the circuits are not available, then the call is blocked, and we receive a
busy signal. A blocked call can try again to gain admission to the network, but it
is not allowed to send traffic into the network until it has successfully completed
the call admission process. 

Of course, just as the restaurant manager from Section 1.3.1 should not accept
reservations for more tables than the restaurant has, a router that allocates link
bandwidth should not allocate more than is available at that link. Typically, a call
may reserve only a fraction of the link’s bandwidth, and so a router may allocate
link bandwidth to more than one call. However, the sum of the allocated band-
width to all calls should be less than the link capacity. 

1. Call setup signaling. The call admission process described above requires that
a call be able to reserve sufficient resources at each and every network router
on its source-to-destination path to ensure that its end-to-end QoS requirement
is met. Each router must determine the local resources required by the session,
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consider the amounts of its resources that are already committed to other ongo-
ing sessions, and determine whether it has sufficient resources to satisfy the
per-hop QoS requirement of the session at this router without violating local
QoS guarantees made to an already-admitted session. A signaling protocol is
needed to coordinate these various activities—the per-hop allocation of local
resources, as well as the overall end-end decision of whether or not the call has
been able to reserve sufficient resources at each and every router on the end-
end path. This is the job of the call setup protocol.

Figure 7.32 depicts the call setup process. Let’s now consider the steps involved in
call admission in more detail:

1. Traffic characterization and specification of the desired QoS. In order for a
router to determine whether or not its resources are sufficient to meet a call’s
QoS requirement, that call must first declare its QoS requirement, as well as
characterize the traffic that it will be sending into the network, and for which it
requires a QoS guarantee. In the Internet’s Intserv architecture, the so-called
Rspec (R for reservation) [RFC 2215] defines the specific QoS being requested
by a call; the so-called Tspec (T for traffic) [RFC 2210] characterizes the traf-
fic the sender will be sending into the network or that the receiver will be
receiving from the network, respectively. The specific form of the Rspec and
Tspec will vary, depending on the service requested, as discussed below. In
ATM networks, the user traffic description and the QoS parameter information
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Figure 7.32 � The call setup process
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elements carry information for similar purposes as the Tspec and Rspec recep-
tively; see [Black 1997] for details. 

2. Signaling for call setup. A call’s traffic descriptor and QoS request must be
carried to the routers at which resources will be reserved for the call. In the
Internet, the RSVP protocol [RFC 2210] is used for this purpose within the
Intserv architecture. In ATM networks, the Q2931b [Black 1997] protocol car-
ries this information among the ATM network’s switches and end point.

3. Per-element call admission. Once a router receives the traffic specification and
QoS, it must determine whether or not it can admit the call. This call admission
decision will depend on the traffic specification, the requested type of service,
and the existing resource commitments already made by the router to ongoing
calls. Recall that in Section 7.5.3, for example, we saw how the combination of
a leaky-bucket-controlled source and WFQ can be used to determine the maxi-
mum queuing delay for that source. Per-element call admission is shown in
Figure 7.33. 

For additional discussion of call setup and admission, see [Breslau 2000; Roberts
2004].

7.6.3 Guaranteed QoS in the Internet: Intserv and RSVP

The integrated services (Intserv) architecture is a framework developed within the
IETF to provide individualized QoS guarantees to individual application sessions in
the Internet. Intserv’s guaranteed service specification, defined in [RFC 2212], pro-
vides firm (mathematically provable) bounds on the queuing delays that a packet
will experience in a router. While the details behind guaranteed service are rather
complicated, the basic idea is really quite simple. To a first approximation, a
source’s traffic characterization is given by a leaky bucket (see Section 7.5.2) with
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THE PRINCIPLE OF SOFT STATE

RSVP is used to install state (bandwidth reservations) in routers, and is known as a soft-state
protocol. Broadly speaking, we associate the term soft state with signaling approaches in
which installed state times out (and is removed) unless periodically refreshed by the receipt
of a signaling message (typically from the entity that initially installed the state) indicating
that the state should continue to remain installed. Since unrefreshed state will eventually
time out, soft-state signaling requires neither explicit state removal nor a procedure to
remove orphaned state should the state installer crash. Similarly, since state installation and
refresh messages will be followed by subsequent periodic refresh messages, reliable signal-
ing is not required. The term soft state was coined by Clark [Clark 1988], who described
the notion of periodic state refresh messages being sent by an end system, and suggested
that with such refresh messages, state could be lost in a crash and then automatically
restored by subsequent refresh messages—all transparently to the end system and without
invoking any explicit crash-recovery procedures:

”. . . the state information would not be critical in maintaining the desired type of
service associated with the flow. Instead, that type of service would be enforced by
the end points, which would periodically send messages to ensure that the proper
type of service was being associated with the flow. In this way, the state informa-
tion associated with the flow could be lost in a crash without permanent disruption
of the service features being used. I call this concept “soft state,” and it may very
well permit us to achieve our primary goals of survivability and flexibility. . .”

Roughly speaking, then, the essence of a soft-state approach is the use of best-effort
periodic state installation/refresh by the state installer and state-removal-by-timeout at the
state holder. Soft-state approaches have been taken in numerous protocols, including
RSVP , PIM (Section 4.7) , SIP (Section 7.4.3), and IGMP (Section 4.7), and in forward-
ing tables in transparent bridges (Section 5.6).

Hard-state signaling takes the converse approach to soft state—installed state remains
installed unless explicitly removed by the receipt of a state-teardown message from the state
installer. Since the state remains installed unless explicitly removed, hard-state signaling
requires a mechanism to remove an orphaned state that remains after the state installer has
crashed or departed without removing the state. Similarly, since state installation and removal
are performed only once (and without state refresh or state timeout), it is important for the
state installer to know when the state has been installed or removed. Reliable (rather than
best-effort) signaling protocols are thus typically associated with hard-state protocols. Roughly
speaking, then, the essence of a hard-state approach is the reliable and explicit installation
and removal of state information. Hard-state approaches have been taken in protocols such
as ST-II [Partridge 1992, RFC 1190] and Q.2931 [ITU-T Q.2931 1994].

RSVP has provided for explicit (although optional) removal of reservations since its
conception. 

PRINCIPLES IN PRACTICE
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parameters (r,b) and the requested service is characterized by the transmission rate,
R, at which packets will be transmitted. In essence, a call requesting guaranteed
service is requiring that the bits in its packet be guaranteed a forwarding rate of R
bits/sec. Given that traffic is specified using a leaky bucket characterization, and a
guaranteed rate of R is being requested, it is also possible to bound the maximum
queuing delay at the router. Recall that with a leaky bucket traffic characterization,
the amount of traffic (in bits) generated over any interval of length t is bounded by
rt + b. Recall also from Section 7.5.2 that when a leaky bucket source is fed into a
queue that guarantees that queued traffic will be serviced at least at a rate of R bits
per second, the maximum queuing delay experienced by any packet will be bounded
by b/R, as long as R is greater than r. A second form of Intserv service guarantee has
also been defined, known as controlled load service, which specifies that a call will
receive “a quality of service closely approximating the QoS that same flow would
receive from an unloaded network element” [RFC 2211].

The Resource ReSerVation Protocol (RSVP) [RFC 2205; Zhang 1993] is an
Internet signaling protocol that could be used to perform the call setup signaling
needed by Intserv. RSVP has also been used in conjunction with Diffserv to coordi-
nate Diffserv functions across multiple networks, and has also been extended and
used as a signaling protocol in other circumstances, perhaps most notably in the
form of RSVP-TE [RFC 3209] for MPLS signaling, as discussed in Section 5.8.2. 

In an Intserv context, the RSVP protocol allows applications to reserve band-
width for their data flows. It is used by a host, on the behalf of an application data
flow, to request a specific amount of bandwidth from the network. RSVP is also
used by the routers to forward bandwidth reservation requests. To implement RSVP,
RSVP software must be present in the receivers, senders, and routers along the end-
end path shown in Figure 7.32. The two principal characteristics of RSVP are:

• It provides reservations for bandwidth in multicast trees, with unicast being
handled as a degenerate case of multicast. This is particularly important for mul-
timedia applications such as streaming-broadcast-TV-over-IP, where many
receivers may want to receive the same multimedia traffic being sent from a sin-
gle source. 

• It is receiver-oriented; that is, the receiver of a data flow initiates and maintains
the resource reservation used for that flow. The innovative, receiver-centric view
taken by RSVP puts receivers firmly in control of the traffic they receive, for
example allowing different receivers to receive and view a multimedia multicast
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ACK-based reliable signaling was introduced as an extension to RSVP in [RFC 2961]
and was also suggested in [Pan 1997]. RSVP has thus optionally adopted some elements
of a hard-state signaling approach. For a discussion and comparison of soft-state versus
hard-state protocols, see [Ji 2003].
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at different resolutions. This contrasts with the sender-centric view of signaling
adopted in ATM’s Q2931b.

The RSVP standard [RFC 2205] does not specify how the network provides the
reserved bandwidth to the data flows. It is merely a protocol that allows the applica-
tions to reserve the necessary link bandwidth. Once the reservations are in place, it
is up to the routers in the Internet to actually provide the reserved bandwidth to the
data flows. This provisioning would likely be done using the policing and schedul-
ing mechanisms (leaky bucket, priority scheduling, weighted fair queuing) dis-
cussed in Section 7.5. For more information about RSVP, see [RFC 2205; Zhang
1993] and the additional online electronic material associated with this book.

7.7 Summary

Multimedia networking is one of the most exciting (and yet still-to-be-fully-
realized) developments in the Internet today. People throughout the world are spend-
ing less time in front of their radios and televisions, and are instead turning to the
Internet to receive audio and video transmissions, both live and prerecorded. As
high-speed access penetrates more residences, this trend will continue—couch pota-
toes throughout the world will access their favorite video programs through the
Internet rather than through the traditional broadcast distribution channels. In addi-
tion to audio and video distribution, the Internet is also being used to transport
phone calls. In fact, over the next 10 years the Internet may render the traditional
circuit-switched telephone system nearly obsolete in many countries. The Internet
not only will provide phone service for less money, but will also provide numerous
value-added services, such as video conferencing, online directory services, voice
messaging services, and Web integration.

In Section 7.1 we classified multimedia applications into three categories:
streaming stored audio and video, one-to-many transmission of real-time audio and
video, and real-time interactive audio and video. We emphasized that multimedia
applications are delay-sensitive and loss-tolerant—characteristics that are very dif-
ferent from static-content applications that are delay-tolerant and loss-intolerant. We
also discussed some of the hurdles that today’s best-effort Internet places before
multimedia applications. We surveyed several proposals to overcome these hurdles,
including simply improving the existing networking infrastructure (by adding more
bandwidth, more network caches, and more CDN nodes, and by deploying multi-
cast), adding functionality to the Internet so that applications can reserve end-to-end
resources (and so that the network can honor these reservations), and finally, intro-
ducing service classes to provide service differentiation.

In Sections 7.2–7.4 we examined architectures and mechanisms for multimedia
networking in a best-effort network. In Section 7.2 we surveyed several architectures
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