
136 CHAPTER 2 • APPLICATION LAYER

servers, the registrar would then make sure that a Type NS and a Type A record are
entered into the TLD com servers. Specifically, for the primary authoritative server
for networkutopia.com, the registrar would insert the following two resource
records into the DNS system:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

You’ll also have to make sure that the Type A resource record for your Web server
www.networkutopia.com and the Type MX resource record for your mail
server mail.networkutopia.com are entered into your authoritative DNS
servers. (Until recently, the contents of each DNS server were configured statically,
for example, from a configuration file created by a system manager. More recently,
an UPDATE option has been added to the DNS protocol to allow data to be dynami-
cally added or deleted from the database via DNS messages. [RFC 2136] and [RFC
3007] specify DNS dynamic updates.)

Once all of these steps are completed, people will be able to visit your Web site
and send e-mail to the employees at your company. Let’s conclude our discussion of
DNS by verifying that this statement is true. This verification also helps to solidify
what we have learned about DNS. Suppose Alice in Australia wants to view the Web
page www.networkutopia.com. As discussed earlier, her host will first send a
DNS query to her local DNS server. The local DNS server will then contact a TLD
com server. (The local DNS server will also have to contact a root DNS server if the
address of a TLD com server is not cached.) This TLD server contains the Type NS
and Type A resource records listed above, because the registrar had these resource
records inserted into all of the TLD com servers. The TLD com server sends a reply
to Alice’s local DNS server, with the reply containing the two resource records. The
local DNS server then sends a DNS query to 212.212.212.1, asking for the Type
A record corresponding to www.networkutopia.com. This record provides the
IP address of the desired Web server, say, 212.212.71.4, which the local DNS
server passes back to Alice’s host. Alice’s browser can now initiate a TCP connec-
tion to the host 212.212.71.4 and send an HTTP request over the connection.
Whew! There’s a lot more going on than what meets the eye when one surfs the Web!

2.5 Peer-to-Peer File Distribution

The applications described in this chapter thus far—including the Web, e-mail, and
DNS—all employ client-server architectures with significant reliance on always-on
infrastructure servers. Recall from Section 2.1.1 that with a P2P architecture, there
is minimal (or no) reliance on always-on infrastructure servers. Instead, pairs of
intermittently connected hosts, called peers, communicate directly with each other.
The peers are not owned by a service provider, but are instead PCs, laptops, and
smartpones controlled by users.

M02_KURO1557_08_SE_C02.indd 136 11/02/20 11:41 AM

kurose
Rectangle

2.5 • PEER-TO-PEER fILE dIsTRIbuTION 137

In this section, we consider a very natural P2P application, namely, distributing a
large file from a single server to a large number of hosts (called peers). The file might
be a new version of the Linux operating system, a software patch for an existing
operating system or an MPEG video file. In client-server file distribution, the server
must send a copy of the file to each of the peers—placing an enormous burden on the
server and consuming a large amount of server bandwidth. In P2P file distribution,
each peer can redistribute any portion of the file it has received to any other peers,
thereby assisting the server in the distribution process. As of 2020, the most popular
P2P file distribution protocol is BitTorrent. Originally developed by Bram Cohen,
there are now many different independent BitTorrent clients conforming to the Bit-
Torrent protocol, just as there are a number of Web browser clients that conform to
the HTTP protocol. In this subsection, we first examine the self-scalability of P2P
architectures in the context of file distribution. We then describe BitTorrent in some
detail, highlighting its most important characteristics and features.

Scalability of P2P Architectures

To compare client-server architectures with peer-to-peer architectures, and illustrate
the inherent self-scalability of P2P, we now consider a simple quantitative model
for distributing a file to a fixed set of peers for both architecture types. As shown
in Figure 2.22, the server and the peers are connected to the Internet with access

Internet

File: F
Server

us

u1 u2

u3

d1

d2

d3

u4

u5u6

d4

d5

d6

uN

dN

Figure 2.22  ♦  An illustrative file distribution problem

M02_KURO1557_08_SE_C02.indd 137 11/02/20 11:41 AM

138 CHAPTER 2 • APPLICATION LAYER

links. Denote the upload rate of the server’s access link by us, the upload rate of the
ith peer’s access link by ui, and the download rate of the ith peer’s access link by
di. Also denote the size of the file to be distributed (in bits) by F and the number of
peers that want to obtain a copy of the file by N. The distribution time is the time it
takes to get a copy of the file to all N peers. In our analysis of the distribution time
below, for both client-server and P2P architectures, we make the simplifying (and
generally accurate [Akella 2003]) assumption that the Internet core has abundant
bandwidth, implying that all of the bottlenecks are in access networks. We also sup-
pose that the server and clients are not participating in any other network applica-
tions, so that all of their upload and download access bandwidth can be fully devoted
to distributing this file.

Let’s first determine the distribution time for the client-server architecture,
which we denote by Dcs. In the client-server architecture, none of the peers aids in
distributing the file. We make the following observations:

• The server must transmit one copy of the file to each of the N peers. Thus, the
server must transmit NF bits. Since the server’s upload rate is us, the time to dis-
tribute the file must be at least NF/us.

• Let dmin denote the download rate of the peer with the lowest download rate, that
is, dmin = min5d1, dp, . . . , dN6 . The peer with the lowest download rate cannot
obtain all F bits of the file in less than F/dmin seconds. Thus, the minimum distri-
bution time is at least F/dmin.

Putting these two observations together, we obtain

Dcs Ú maxb NF
us

 ,
F

dmin
r .

This provides a lower bound on the minimum distribution time for the client-server
architecture. In the homework problems, you will be asked to show that the server
can schedule its transmissions so that the lower bound is actually achieved. So let’s
take this lower bound provided above as the actual distribution time, that is,

 Dcs = maxb NF
us

,
F

dmin
r (2.1)

We see from Equation 2.1 that for N large enough, the client-server distribution time
is given by NF/us. Thus, the distribution time increases linearly with the number of
peers N. So, for example, if the number of peers from one week to the next increases
a thousand-fold from a thousand to a million, the time required to distribute the file
to all peers increases by 1,000.

M02_KURO1557_08_SE_C02.indd 138 11/02/20 11:41 AM

2.5 • PEER-TO-PEER fILE dIsTRIbuTION 139

Let’s now go through a similar analysis for the P2P architecture, where each peer
can assist the server in distributing the file. In particular, when a peer receives some
file data, it can use its own upload capacity to redistribute the data to other peers. Cal-
culating the distribution time for the P2P architecture is somewhat more complicated
than for the client-server architecture, since the distribution time depends on how
each peer distributes portions of the file to the other peers. Nevertheless, a simple
expression for the minimal distribution time can be obtained [Kumar 2006]. To this
end, we first make the following observations:

• At the beginning of the distribution, only the server has the file. To get this file
into the community of peers, the server must send each bit of the file at least once
into its access link. Thus, the minimum distribution time is at least F/us. (Unlike
the client-server scheme, a bit sent once by the server may not have to be sent by
the server again, as the peers may redistribute the bit among themselves.)

• As with the client-server architecture, the peer with the lowest download rate
cannot obtain all F bits of the file in less than F/dmin seconds. Thus, the minimum
distribution time is at least F/dmin.

• Finally, observe that the total upload capacity of the system as a whole is equal
to the upload rate of the server plus the upload rates of each of the individual
peers, that is, utotal = us + u1 + g+ uN. The system must deliver (upload) F
bits to each of the N peers, thus delivering a total of NF bits. This cannot be done
at a rate faster than utotal. Thus, the minimum distribution time is also at least
NF/(us + u1 + g+ uN).

Putting these three observations together, we obtain the minimum distribution
time for P2P, denoted by DP2P.

DP2P Ú max c F

us
,

F
dmin

,
NF

us + a
N

i=1
ui

s (2.2)

Equation 2.2 provides a lower bound for the minimum distribution time for the P2P
architecture. It turns out that if we imagine that each peer can redistribute a bit as
soon as it receives the bit, then there is a redistribution scheme that actually achieves
this lower bound [Kumar 2006]. (We will prove a special case of this result in the
homework.) In reality, where chunks of the file are redistributed rather than indi-
vidual bits, Equation 2.2 serves as a good approximation of the actual minimum
distribution time. Thus, let’s take the lower bound provided by Equation 2.2 as the
actual minimum distribution time, that is,

DP2P = max c F

us
,

F
dmin

,
NF

us + a
N

i=1
ui
s (2.3)

M02_KURO1557_08_SE_C02.indd 139 11/02/20 11:41 AM

140 CHAPTER 2 • APPLICATION LAYER

Figure 2.23 compares the minimum distribution time for the client-server and
P2P architectures assuming that all peers have the same upload rate u. In Figure 2.23,
we have set F/u = 1 hour, us = 10u, and dmin Ú us. Thus, a peer can transmit the
entire file in one hour, the server transmission rate is 10 times the peer upload rate,
and (for simplicity) the peer download rates are set large enough so as not to have
an effect. We see from Figure 2.23 that for the client-server architecture, the distri-
bution time increases linearly and without bound as the number of peers increases.
However, for the P2P architecture, the minimal distribution time is not only always
less than the distribution time of the client-server architecture; it is also less than one
hour for any number of peers N. Thus, applications with the P2P architecture can be
self-scaling. This scalability is a direct consequence of peers being redistributors as
well as consumers of bits.

BitTorrent

BitTorrent is a popular P2P protocol for file distribution [Chao 2011]. In BitTorrent
lingo, the collection of all peers participating in the distribution of a particular file is
called a torrent. Peers in a torrent download equal-size chunks of the file from one
another, with a typical chunk size of 256 KBytes. When a peer first joins a torrent, it
has no chunks. Over time it accumulates more and more chunks. While it downloads
chunks it also uploads chunks to other peers. Once a peer has acquired the entire
file, it may (selfishly) leave the torrent, or (altruistically) remain in the torrent and
continue to upload chunks to other peers. Also, any peer may leave the torrent at any
time with only a subset of chunks, and later rejoin the torrent.

0
5 10 15 20 25 300

N

M
in

im
um

 d
is

tr
ib

ut
io

n
tim

e

35

0.5

1.5

2.5

1.0

3.0

2.0

3.5

Client-Server

P2P

Figure 2.23  ♦  Distribution time for P2P and client-server architectures

M02_KURO1557_08_SE_C02.indd 140 11/02/20 11:41 AM

2.5 • PEER-TO-PEER fILE dIsTRIbuTION 141

Let’s now take a closer look at how BitTorrent operates. Since BitTorrent is
a rather complicated protocol and system, we’ll only describe its most important
mechanisms, sweeping some of the details under the rug; this will allow us to see
the forest through the trees. Each torrent has an infrastructure node called a tracker.
When a peer joins a torrent, it registers itself with the tracker and periodically informs
the tracker that it is still in the torrent. In this manner, the tracker keeps track of the
peers that are participating in the torrent. A given torrent may have fewer than ten or
more than a thousand peers participating at any instant of time.

As shown in Figure 2.24, when a new peer, Alice, joins the torrent, the tracker
randomly selects a subset of peers (for concreteness, say 50) from the set of partici-
pating peers, and sends the IP addresses of these 50 peers to Alice. Possessing this
list of peers, Alice attempts to establish concurrent TCP connections with all the
peers on this list. Let’s call all the peers with which Alice succeeds in establishing a
TCP connection “neighboring peers.” (In Figure 2.24, Alice is shown to have only
three neighboring peers. Normally, she would have many more.) As time evolves,
some of these peers may leave and other peers (outside the initial 50) may attempt to
establish TCP connections with Alice. So a peer’s neighboring peers will fluctuate
over time.

Tracker

Trading chunks

Peer

Obtain
list of
peers

Alice

Figure 2.24  ♦  File distribution with BitTorrent

M02_KURO1557_08_SE_C02.indd 141 11/02/20 11:41 AM

142 CHAPTER 2 • APPLICATION LAYER

At any given time, each peer will have a subset of chunks from the file, with dif-
ferent peers having different subsets. Periodically, Alice will ask each of her neigh-
boring peers (over the TCP connections) for the list of the chunks they have. If Alice
has L different neighbors, she will obtain L lists of chunks. With this knowledge,
Alice will issue requests (again over the TCP connections) for chunks she currently
does not have.

So at any given instant of time, Alice will have a subset of chunks and will know
which chunks her neighbors have. With this information, Alice will have two impor-
tant decisions to make. First, which chunks should she request first from her neigh-
bors? And second, to which of her neighbors should she send requested chunks? In
deciding which chunks to request, Alice uses a technique called rarest first. The
idea is to determine, from among the chunks she does not have, the chunks that are
the rarest among her neighbors (that is, the chunks that have the fewest repeated cop-
ies among her neighbors) and then request those rarest chunks first. In this manner,
the rarest chunks get more quickly redistributed, aiming to (roughly) equalize the
numbers of copies of each chunk in the torrent.

To determine which requests she responds to, BitTorrent uses a clever trading
algorithm. The basic idea is that Alice gives priority to the neighbors that are cur-
rently supplying her data at the highest rate. Specifically, for each of her neighbors,
Alice continually measures the rate at which she receives bits and determines the four
peers that are feeding her bits at the highest rate. She then reciprocates by sending
chunks to these same four peers. Every 10 seconds, she recalculates the rates and pos-
sibly modifies the set of four peers. In BitTorrent lingo, these four peers are said to be
unchoked. Importantly, every 30 seconds, she also picks one additional neighbor at
random and sends it chunks. Let’s call the randomly chosen peer Bob. In BitTorrent
lingo, Bob is said to be optimistically unchoked. Because Alice is sending data to
Bob, she may become one of Bob’s top four uploaders, in which case Bob would start
to send data to Alice. If the rate at which Bob sends data to Alice is high enough, Bob
could then, in turn, become one of Alice’s top four uploaders. In other words, every
30 seconds, Alice will randomly choose a new trading partner and initiate trading
with that partner. If the two peers are satisfied with the trading, they will put each
other in their top four lists and continue trading with each other until one of the peers
finds a better partner. The effect is that peers capable of uploading at compatible
rates tend to find each other. The random neighbor selection also allows new peers
to get chunks, so that they can have something to trade. All other neighboring peers
besides these five peers (four “top” peers and one probing peer) are “choked,” that
is, they do not receive any chunks from Alice. BitTorrent has a number of interesting
mechanisms that are not discussed here, including pieces (mini-chunks), pipelining,
random first selection, endgame mode, and anti-snubbing [Cohen 2003].

The incentive mechanism for trading just described is often referred to as tit-for-
tat [Cohen 2003]. It has been shown that this incentive scheme can be circumvented
[Liogkas 2006; Locher 2006; Piatek 2008]. Nevertheless, the BitTorrent ecosystem
is wildly successful, with millions of simultaneous peers actively sharing files in

M02_KURO1557_08_SE_C02.indd 142 11/02/20 11:41 AM

2.6 • vIdEO sTREAMINg ANd CONTENT dIsTRIbuTION NETwORks 143

hundreds of thousands of torrents. If BitTorrent had been designed without tit-for-tat
(or a variant), but otherwise exactly the same, BitTorrent would likely not even exist
now, as the majority of the users would have been freeriders [Saroiu 2002].

We close our discussion on P2P by briefly mentioning another application of P2P,
namely, Distributed Hast Table (DHT). A distributed hash table is a simple database,
with the database records being distributed over the peers in a P2P system. DHTs have
been widely implemented (e.g., in BitTorrent) and have been the subject of extensive
research. An overview is provided in a Video Note in the companion website.

2.6 Video Streaming and Content Distribution
Networks

By many estimates, streaming video—including Netflix, YouTube and Amazon
Prime—account for about 80% of Internet traffic in 2020 [Cisco 2020]. This section
we will provide an overview of how popular video streaming services are imple-
mented in today’s Internet. We will see they are implemented using application-level
protocols and servers that function in some ways like a cache.

2.6.1 Internet Video
In streaming stored video applications, the underlying medium is prerecorded video,
such as a movie, a television show, a prerecorded sporting event, or a prerecorded
user-generated video (such as those commonly seen on YouTube). These prere-
corded videos are placed on servers, and users send requests to the servers to view
the videos on demand. Many Internet companies today provide streaming video,
including, Netflix, YouTube (Google), Amazon, and TikTok.

But before launching into a discussion of video streaming, we should first get
a quick feel for the video medium itself. A video is a sequence of images, typi-
cally being displayed at a constant rate, for example, at 24 or 30 images per second.
An uncompressed, digitally encoded image consists of an array of pixels, with each
pixel encoded into a number of bits to represent luminance and color. An important
characteristic of video is that it can be compressed, thereby trading off video quality
with bit rate. Today’s off-the-shelf compression algorithms can compress a video to
essentially any bit rate desired. Of course, the higher the bit rate, the better the image
quality and the better the overall user viewing experience.

From a networking perspective, perhaps the most salient characteristic of video
is its high bit rate. Compressed Internet video typically ranges from 100 kbps for
low-quality video to over 4 Mbps for streaming high-definition movies; 4K stream-
ing envisions a bitrate of more than 10 Mbps. This can translate to huge amount of
traffic and storage, particularly for high-end video. For example, a single 2 Mbps

Walking though
distributed hash tables

VideoNote

M02_KURO1557_08_SE_C02.indd 143 11/02/20 11:41 AM

kurose
Rectangle

