
are satisfied with the trading, they will put each other in their top four lists and con-
tinue trading with each other until one of the peers finds a better partner. The effect
is that peers capable of uploading at compatible rates tend to find each other. The
random neighbor selection also allows new peers to get chunks, so that they can
have something to trade. All other neighboring peers besides these five peers (four
“top” peers and one probing peer) are “choked,” that is, they do not receive any
chunks from Alice.

In P2P file-sharing, a common problem is free-riding, in which a peer down-
loads files from the file sharing system without uploading files. BitTorrent’s trading
algorithm virtually eliminates the free-riding problem, since in order for Alice to
download bits from Bob at a respectable rate for an extended period of time, she
must at the same time upload bits to Bob at a respectable rate. BitTorrent has a num-
ber of other interesting mechanisms that are not discussed here, including pieces
(mini-chunks), pipelining, random first selection, endgame mode, and anti-snubbing
[Cohen 2003].

2.6.2 Searching for Information in a P2P Community

A critical component of many P2P applications is an information index—a mapping
of information to host locations. In such applications, the peers dynamically update
and search the index. Since the notion of “a mapping of information to host loca-
tions” may sound a bit abstract, let’s take a look at a couple of concrete examples.

• In a P2P file-sharing system, there is typically a large number of participating
peers, with each peer having files to share, including MP3s, videos, images, and
software. A P2P file-sharing system has an index that dynamically tracks the files
that the peers are making available for sharing. For each copy of each file being
shared by the community of peers, the index maintains a record that maps infor-
mation about the copy (for example, if it is an MP3 song, then the title of the
song, the artist, and so on) to the IP address of the peer that has the copy. The
index is dynamically updated as peers come and go and as peers obtain new
copies of files. For example, when a peer joins the system, it notifies the index
of the files it has. When a particular user, say Alice, wants to obtain a particular
file, she searches the index to locate copies of the desired file. After having
located peers that have copies of the file, she can then download the file from
those peers. Once she has the entire file, the index gets updated to account for
Alice’s new copy of the file.

• In an instant messaging application, there is an index that maps usernames to
locations (IP addresses). To understand the importance of the index in this appli-
cation, consider two users, BeautifulAlice and HandsomeBob, both of whom are
on each other’s buddy list. When HandsomeBob starts his instant messaging
client on a host with IP address X, his client will notify the index that Handsome-
Bob is online at IP address X. Later, when BeautifulAlice starts her instant

2.6 • PEER-TO-PEER APPLICATIONS 151

CH02_081-194.qxd 21/2/07 14:22 Page 151

kurose
Rectangle

messaging client, because HandsomeBob is on her buddy list, her client searches
the index for HandsomeBob and discovers that HandsomeBob is online at IP
address X. BeautifulAlice can then establish a direct TCP connection to the host
at address X and begin to instant message with HandsomeBob. In addition to
instant messaging, many other of today’s applications use an index for presence
tracking, including Internet telephony systems (see Section 2.6.3).

We briefly mention here that the BitTorrent protocol, which is solely a file distribu-
tion protocol, does not provide any functionality for indexing and searching for
files.

Below we discuss three approaches for organizing and searching an index in a
community of peers. For concreteness, we’ll do this in the context of searching for a
file in a P2P file-sharing system. But we emphasize that this discussion equally
applies to searching for any kind of information in a P2P community.

Centralized Index

One of the more straightforward approaches to locating a file is to provide a
centralized index, as was done by Napster, the first large-scale commercial deploy-
ment of a P2P file-sharing application. In this design, the index service is provided
by a large server (or server farm). As shown in Figure 2.27, when a user launches
the P2P file-sharing application, the application informs the index server of its IP
address and of the names of the files that it is making available for sharing (for

152 CHAPTER 2 • APPLICATION LAYER

Inform and update

Inform and update

Inform and update
Inform and update

Centralized
directory server

Bob

Peers

Alice

2
Query for content

Fi
le

 t
ra

n
sf

er

1

1

1

1
3

Figure 2.27 � Centralized index

CH02_081-194.qxd 21/2/07 14:22 Page 152

example, the titles of all of its stored MP3s). The index server collects this informa-
tion from each peer that becomes active, thereby creating a centralized, dynamic
index that maps each file copy to a set of IP addresses. Note that a P2P file-sharing
system with a centralized index is really a hybrid of P2P and client-server architec-
tures. The file distribution is P2P but the search is client-server. Such hybrid archi-
tectures can be found in a number of applications today, including many instant
messaging applications.

Using a centralized index to locate information is conceptually straightforward,
but it does have a number of drawbacks:

• Single point of failure. If the index server crashes, the entire application crashes.
Even if a server farm with redundant servers is used, Internet connections to the
server farm can fail, causing the entire application to crash.

• Performance bottleneck and infrastructure cost. In a large P2P system, with hun-
dreds of thousands of connected users, a centralized server must maintain a huge
index and must respond to thousands of queries per second. In fact, in 2000,
when Napster was the most popular P2P file-sharing application, Napster was
plagued by traffic problems at its centralized server.

• Copyright infringement. Although this topic is beyond the scope of this book, we
briefly mention that the recording industry has been concerned (to say the least!)
that P2P file-sharing systems allow users to easily obtain copyrighted content
for free. (For an excellent discussion of how copyright laws bear on P2P, see
[von Lohmann 2003].) When a P2P file-sharing company has a centralized index
server, legal proceedings may result in the company having to shut down the
index server. It is more difficult to shut down the more decentralized archi-
tectures.

Query Flooding

At the opposite end of the spectrum from centralized directories is the completely
decentralized approach of query flooding. Query flooding was employed by the
original incarnation of the Gnutella protocol. In query flooding, the index is fully
distributed over the community of peers. Each peer indexes the files that it is mak-
ing available for sharing and no other files.

In query flooding, the peers form an abstract, logical network called an overlay
network, which is defined in graph-theoretic terms as follows. If peer X maintains
a TCP connection with another peer Y, then we say there is an edge between X and
Y. The graph consisting of all active peers and the connecting edges (ongoing TCP
connections) defines the overlay network. Note that an edge is not a physical com-
munication link; instead, an edge is an abstract link, which may consist of many
underlying physical links. An edge in the overlay network may represent the TCP
connection between a peer in Lithuania and a peer in Brazil, for example.

2.6 • PEER-TO-PEER APPLICATIONS 153

CH02_081-194.qxd 21/2/07 14:22 Page 153

154 CHAPTER 2 • APPLICATION LAYER

Although such an overlay network may have hundreds of thousands of partici-
pating peers, a given peer will typically be connected to a small number of other
nodes (typically, fewer than 10) in the overlay network, as shown in Figure 2.28.
Later we’ll explain how the overlay network can be built and maintained as peers
join and leave the network. For now let’s assume that the overlay network is in place
and focus on how a peer locates and retrieves content.

In this design, peers send messages to neighboring peers in the overlay network
over the pre-existing TCP connections. When Alice wants to locate “Network
Love,” her client sends a query message, which includes the keywords “Network
Love,” to all of her neighbors. All of Alice’s neighbors forward the query to all of
their neighbors, which in turn forward the query to all of their neighbors, and so on.
This query flooding process is shown in Figure 2.28. When a peer receives a query,
it checks to see whether the keyword matches any of the files it is making available
for sharing. If there is a match, the peer sends a query-hit message to Alice contain-
ing the matched file name and file size. The query-hit message follows the reverse
path of the query message, thereby using pre-existing TCP connections. In this man-
ner, Alice discovers the peers that have a copy of the file she desires.

Although this decentralized design is simple and elegant, it is often criticized
for being non-scalable. In particular, with query flooding, whenever a peer initiates
a query, the query is flooded to every other peer in the entire overlay network,
creating a significant amount of traffic among the peers in the underlying network

Query

Query
hit

Query

Query

Query hit

Query

File transfer

Query

Query hit

Figure 2.28 � Query flooding

CH02_081-194.qxd 21/2/07 14:22 Page 154

(e.g., the Internet) connecting the peers. The Gnutella designers responded to this
problem by using limited-scope query flooding. Specifically, when Alice sends
out her initial query message, a peer-count field in the message is set to a specific
limit (say, 7). Each time the query message reaches a new peer, the peer decrements
the peer-count field before forwarding the query to its overlay neighbors. When a
peer receives a query with the peer-count field equal to zero, it stops forwarding
the query. In this manner, flooding is localized to a region of the overlay network
around the peer that initiates the limited-scope query. Clearly, this limited-scope
query flooding reduces query traffic. However, it also reduces the number of peers
that are queried. Thus, it is possible that a peer seeking content may not be able to
locate that content, even though that content is located somewhere in the commu-
nity of peers.

A fundamental issue in overlays is that of handling peer joins or departures.
Using the original Gnutella design as an example, we now describe how an overlay
network can be maintained as new peers join. Suppose a new peer X wants to join
the overlay network.

1. Peer X must first find some other peer that is already in the overlay network.
One approach to solve this bootstrap problem is for X to maintain a list of
peers (IP addresses) that are often up in the overlay network; alternatively, X
can contact a tracker site (as in BitTorrent) that maintains such a list.

2. Once X has access to such a list, X sequentially attempts to set up a TCP con-
nection with peers on the list until one connection is created with some peer Y.

3. After the TCP connection is established between X and Y, peer X can send
a “ping” message to Y. The ping message includes a peer-count field. On
receiving the ping message, Y forwards it to all its neighbors in the overlay
network. The peers continue to forward the ping message until the peer-count
field is zero.

4. Whenever a peer Z receives a ping message, it responds by sending a “pong”
message through the overlay network back to X. The pong message includes
Z’s IP address.

5. After X receives the pong messages, it knows the IP addresses of many peers in
the overlay network. It can then set up TCP connections with some of these other
peers, thereby creating multiple edges from itself into the overlay network.

We explore the actions an overlay can take upon peer departures in the homework
problems.

We have now covered the essential features of query flooding and dynamic
overlay construction. In summary, query flooding is a simple, distributed
P2P scheme that allows a user to query for information that is located at nearby
peers (where “nearby” means within a small number of hops in the overlay net-
work). The original Gnutella design implemented query flooding as described
above. Over the years, the Gnutella protocol has evolved significantly, and now

2.6 • PEER-TO-PEER APPLICATIONS 155

CH02_081-194.qxd 21/2/07 14:22 Page 155

exploits the heterogeneity of the peers in a P2P file-sharing system. Gnutella
remains very popular today, and is employed by the popular P2P client LimeWire.

Hierarchical Overlay

We have learned that centralized index and query flooding are two diametrically
opposed approaches for locating information. We now describe a third approach,
which we’ll refer to as hierarchical overlay design, which combines the best fea-
tures of these two approaches. The hierarchical overlay design was first pioneered
by FastTrack, a P2P file-sharing protocol that was implemented in a number of
clients over the years, including Kazaa and Morpheus. Modern Gnutella also uses a
hierarchical overlay design, although it is a variant of that described here.

Like the query flooding, the hierarchical overlay design does not use a dedi-
cated server (or server farm) for tracking and indexing files. However, unlike query
flooding, not all peers are equal in a hierarchical overlay design. Specifically, peers
with high-bandwidth connections into the Internet and high availabilities are desig-
nated as super peers and have greater responsibilities. As shown in Figure 2.29, if a
peer is not a super peer, then it is an ordinary peer and is assigned as a child to a
super peer. A super peer may have a few hundred ordinary peers as children.

A new peer first establishes a TCP connection with one of the super peers. The
new peer then informs its super peer of all the files it is making available for shar-
ing. This allows the super peer to maintain an index that includes the identity of all
files its children are sharing, meta-data about these files, and the corresponding IP
addresses of the children holding these files. In this way, each super peer becomes a
“mini” index. But in contrast with the centralized index discussed at the beginning

156 CHAPTER 2 • APPLICATION LAYER

Key:

Ordinary peer

Super peer

Neighboring relationships
in overlay network

Figure 2.29 � Hierarchical overlay

CH02_081-194.qxd 21/2/07 14:22 Page 156

of this subsection, a super peer is not a dedicated server, but is instead an ordinary
peer, typically residing in a residence or a university campus.

If each mini hub and its children were isolated, the amount of content available
to any one peer would be severely limited. To address this limitation, super peers
interconnect themselves with TCP connections, creating an overlay network among
themselves. With this overlay, super peers can forward queries to their neighboring
super peers. This approach is similar to query flooding, but with the limited-scope
flooding taking place in the overlay network of super peers.

When a peer seeks a match for keywords, it sends a query containing the key-
words to its super peer. The super peer responds with the IP addresses of its children
peers that have files whose descriptors match the keywords (along with the identi-
fiers of those files). The super peer may also forward the query to one or more other
neighboring super peers. If a neighboring peer receives such a query, it also
responds with the IP addresses of its children peers that have matching files.
Responses from the super peers follow the reverse path in the overlay network.

This hierarchical overlay design exploits the heterogeneity of peers by desig-
nating a small fraction of the more powerful peers as super peers, which form the
top tier of a hierarchical overlay network, as shown in Figure 2.29. As compared to
limited-scope query flooding (as in the original Gnutella design), the hierarchical
design allows for significantly more peers to be checked for a match, without creat-
ing an excessive quantity of query traffic [Liang 2005].

Before ending our discussion of searching for information in a P2P application,
we briefly mention another important design approach, referred to as a Distributed
Hash Table (DHT) [Stoica 2001; Rowstron 2001; Ratnasamy 2001; Zhao 2004;
Maymounkov 2002; Garces-Erce 2003]. A full discussion of DHTs is beyond the
scope of this book. But we mention here that a DHT (1) creates a fully decentralized
index that maps file identifiers to file locations and (2) allows a user to determine
all the locations of a file (in principle) without generating an excessive amount of
search traffic. DHTs have enjoyed tremendous attention in the research community.
Overnet, a central component of the popular eMule file-sharing application,
employs a DHT [Liang 2006].

2.6.3 Case Study: P2P Internet Telephony with Skype

Skype is an immensely popular P2P application, often with seven or eight million
users connected to it at any one time. In addition to providing PC-to-PC Internet
telephony service, Skype offers PC-to-phone telephony service, phone-to-PC
telephony service, and PC-to-PC video conferencing service. Founded by the same
individuals who created Fastrack and Kazaa, Skype was acquired by eBay in 2005
for $2.6 billion.

Skype uses P2P techniques in a number of innovative ways, nicely illustrating
how P2P can be used in applications that go beyond content distribution and file
sharing. As with instant messaging, PC-to-PC Internet telephony is inherently P2P

2.6 • PEER-TO-PEER APPLICATIONS 157

CH02_081-194.qxd 21/2/07 14:22 Page 157

kurose
Rectangle

