
108      CHAPTER 2   •   APPLICATION LAYER

a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s
session with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party.

2.2.5 Web Caching
A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk
storage and keeps copies of recently requested objects in this storage. As shown in
Figure 2.11, a user’s browser can be configured so that all of the user’s HTTP requests
are first directed to the Web cache [RFC 7234]. Once a browser is configured, each
browser request for an object is first directed to the Web cache. As an example,
suppose a browser is requesting the object http://www.someschool.edu/
campus.gif. Here is what happens:

	1.	 The browser establishes a TCP connection to the Web cache and sends an HTTP
request for the object to the Web cache.

	2.	 The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to the
client browser.

	3.	 If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www.someschool.edu. The Web cache

HTTP request

HTTP response

HTTP request

HTTP response

HTTP requestHTTP response

HTTP requestHTTP response

Client
Origin
server

Origin
server

Client

Proxy
server

Figure 2.11  ♦  Clients requesting objects through a Web cache

M02_KURO1557_08_SE_C02.indd 108 11/02/20 11:41 AM

kurose
Rectangle

2.2   •   The Web and HTTP      109

then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an
HTTP response to the Web cache.

	4.	 When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as Comcast) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing
traffic, the institution (for example, a company or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches
can substantially reduce Web traffic in the Internet as a whole, thereby improving
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet
router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do

M02_KURO1557_08_SE_C02.indd 109 11/02/20 11:41 AM

110      CHAPTER 2   •   APPLICATION LAYER

Public Internet

Institutional network

15 Mbps access link

100 Mbps LAN

Origin servers

Figure 2.12  ♦  Bottleneck between an institutional network and the Internet

a very crude calculation to estimate this delay. The traffic intensity on the LAN
(see Section 1.4.2) is

(15 requests/sec) # (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) # (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly
something must be done.

M02_KURO1557_08_SE_C02.indd 110 11/02/20 11:41 AM

2.2   •   The Web and HTTP      111

One possible solution is to increase the access rate from 15 Mbps to, say, 100 Mbps.
This will lower the traffic intensity on the access link to 0.15, which translates to neg-
ligible delays between the two routers. In this case, the total response time will roughly
be two seconds, that is, the Internet delay. But this solution also means that the institu-
tion must upgrade its access link from 15 Mbps to 100 Mbps, a costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illustrated
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache—
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose
that the cache provides a hit rate of 0.4 for this institution. Because the clients and
the cache are connected to the same high-speed LAN, 40 percent of the requests will
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin
servers. But with only 60 percent of the requested objects passing through the access
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a

Public Internet

Institutional network

15 Mbps access link

Institutional
cache

100 Mbps LAN

Origin servers

Figure 2.13  ♦  Adding a cache to the institutional network

M02_KURO1557_08_SE_C02.indd 111 11/02/20 11:41 AM

112      CHAPTER 2   •   APPLICATION LAYER

traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds,
on a 15 Mbps link. This delay is negligible compared with the two-second Internet
delay. Given these considerations, average delay therefore is

0.4 # (0.01 seconds) + 0.6 # (2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new
problem—the copy of an object residing in the cache may be stale. In other words,
the object housed in the Web server may have been modified since the copy was
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to
verify that its objects are up to date. This mechanism is called the conditional GET
[RFC 7232]. An HTTP request message is a so-called conditional GET message if
(1) the request message uses the GET method and (2) the request message includes an
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK
Date: Sat, 3 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif

(data data data data data ...)

M02_KURO1557_08_SE_C02.indd 112 11/02/20 11:41 AM

2.2   •   The Web and HTTP      113

The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the cache,
and the object is still in the cache. Since this object may have been modified at the
Web server in the past week, the cache performs an up-to-date check by issuing a
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the If-modified-since: header line is exactly equal
to the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a
response message but does not include the requested object in the response message.
Including the requested object would only waste bandwidth and increase user-
perceived response time, particularly if the object is large. Note that this last response
message has 304 Not Modified in the status line, which tells the cache that it
can go ahead and forward its (the proxy cache’s) cached copy of the object to the
requesting browser.

2.2.6 HTTP/2
HTTP/2 [RFC 7540], standardized in 2015, was the first new version of HTTP since
HTTP/1.1, which was standardized in 1997. Since standardization, HTTP/2 has
taken off, with over 40% of the top 10 million websites supporting HTTP/2 in 2020
[W3Techs]. Most browsers—including Google Chrome, Internet Explorer, Safari,
Opera, and Firefox—also support HTTP/2.

The primary goals for HTTP/2 are to reduce perceived latency by enabling request
and response multiplexing over a single TCP connection, provide request prioritization
and server push, and provide efficient compression of HTTP header fields. HTTP/2
does not change HTTP methods, status codes, URLs, or header fields. Instead, HTTP/2
changes how the data is formatted and transported between the client and server.

M02_KURO1557_08_SE_C02.indd 113 11/02/20 11:41 AM

kurose
Rectangle

