
Let’s next focus on a provider network, say AS B. Suppose that B has learned
(from A) that A has a path AW to W. B can thus install the route BAW into its rout-
ing information base. Clearly, B also wants to advertise the path BAW to its cus-
tomer, X, so that X knows that it can route to W via B. But should B advertise the
path BAW to C? If it does so, then C could route traffic to W via CBAW. If A, B,
and C are all backbone providers, than B might rightly feel that it should not have
to shoulder the burden (and cost!) of carrying transit traffic between A and C. B
might rightly feel that it is A’s and C’s job (and cost!) to make sure that C can route
to/from A’s customers via a direct connection between A and C. There are currently
no official standards that govern how backbone ISPs route among themselves. How-
ever, a rule of thumb followed by commercial ISPs is that any traffic flowing across
an ISP’s backbone network must have either a source or a destination (or both) in a
network that is a customer of that ISP; otherwise the traffic would be getting a free
ride on the ISP’s network. Individual peering agreements (that would govern ques-
tions such as those raised above) are typically negotiated between pairs of ISPs and
are often confidential; [Huston 1999a] provides an interesting discussion of peering
agreements. For a detailed description of how routing policy reflects commercial
relationships among ISPs, see [Gao 2001; Dmitiropoulos 2007]. For a discussion of
BGP routing polices from an ISP standpoint, see [Caesar 2005b].

As noted above, BGP is the de facto standard for inter-AS routing for the pub-
lic Internet. To see the contents of various BGP routing tables (large!) extracted
from routers in tier-1 ISPs, see http://www.routeviews.org. BGP routing tables
often contain tens of thousands of prefixes and corresponding attributes. Statistics
about the size and characteristics of BGP routing tables are presented in [Potaroo
2012].

This completes our brief introduction to BGP. Understanding BGP is important
because it plays a central role in the Internet. We encourage you to see the references
[Griffin 2012; Stewart 1999; Labovitz 1997; Halabi 2000; Huitema 1998; Gao
2001; Feamster 2004; Caesar 2005b; Li 2007] to learn more about BGP.

4.7 Broadcast and Multicast Routing

Thus far in this chapter, our focus has been on routing protocols that support unicast
(i.e., point-to-point) communication, in which a single source node sends a packet
to a single destination node. In this section, we turn our attention to broadcast and
multicast routing protocols. In broadcast routing, the network layer provides a
service of delivering a packet sent from a source node to all other nodes in the
network; multicast routing enables a single source node to send a copy of a packet
to a subset of the other network nodes. In Section 4.7.1 we’ll consider broadcast
routing algorithms and their embodiment in routing protocols. We’ll examine multi-
cast routing in Section 4.7.2.

4.7 • BROADCAST AND MULTICAST ROUTING 399

M04_KURO6201_06_SE_C04_PP2.qxd 1/23/12 10:52 AM Page 399

kurose
Rectangle

4.7.1 Broadcast Routing Algorithms

Perhaps the most straightforward way to accomplish broadcast communication is
for the sending node to send a separate copy of the packet to each destination, as
shown in Figure 4.43(a). Given N destination nodes, the source node simply makes
N copies of the packet, addresses each copy to a different destination, and then
transmits the N copies to the N destinations using unicast routing. This N-way-
unicast approach to broadcasting is simple—no new network-layer routing proto-
col, packet-duplication, or forwarding functionality is needed. There are, however,
several drawbacks to this approach. The first drawback is its inefficiency. If the
source node is connected to the rest of the network via a single link, then N separate
copies of the (same) packet will traverse this single link. It would clearly be more
efficient to send only a single copy of a packet over this first hop and then have the
node at the other end of the first hop make and forward any additional needed
copies. That is, it would be more efficient for the network nodes themselves (rather
than just the source node) to create duplicate copies of a packet. For example, in
Figure 4.43(b), only a single copy of a packet traverses the R1-R2 link. That packet
is then duplicated at R2, with a single copy being sent over links R2-R3 and R2-R4.

The additional drawbacks of N-way-unicast are perhaps more subtle, but no less
important. An implicit assumption of N-way-unicast is that broadcast recipients, and
their addresses, are known to the sender. But how is this information obtained? Most
likely, additional protocol mechanisms (such as a broadcast membership or
destination-registration protocol) would be required. This would add more overhead
and, importantly, additional complexity to a protocol that had initially seemed quite
simple. A final drawback of N-way-unicast relates to the purposes for which broad-
cast is to be used. In Section 4.5, we learned that link-state routing protocols use
broadcast to disseminate the link-state information that is used to compute unicast
routes. Clearly, in situations where broadcast is used to create and update unicast
routes, it would be unwise (at best!) to rely on the unicast routing infrastructure to
achieve broadcast.

400 CHAPTER 4 • THE NETWORK LAYER

R2

R4R3
a. b.

Duplicate

Duplicate creation/transmission

R1

R4R3

Duplicate

R1

R2

Figure 4.43 � Source-duplication versus in-network duplication

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 400

Given the several drawbacks of N-way-unicast broadcast, approaches in which
the network nodes themselves play an active role in packet duplication, packet for-
warding, and computation of the broadcast routes are clearly of interest. We’ll
examine several such approaches below and again adopt the graph notation intro-
duced in Section 4.5. We again model the network as a graph, G = (N,E), where N
is a set of nodes and a collection E of edges, where each edge is a pair of nodes from
N. We’ll be a bit sloppy with our notation and use N to refer to both the set of nodes,
as well as the cardinality (|N|) or size of that set when there is no confusion.

Uncontrolled Flooding

The most obvious technique for achieving broadcast is a flooding approach in
which the source node sends a copy of the packet to all of its neighbors. When a
node receives a broadcast packet, it duplicates the packet and forwards it to all of its
neighbors (except the neighbor from which it received the packet). Clearly, if the
graph is connected, this scheme will eventually deliver a copy of the broadcast
packet to all nodes in the graph. Although this scheme is simple and elegant, it has a
fatal flaw (before you read on, see if you can figure out this fatal flaw): If the graph
has cycles, then one or more copies of each broadcast packet will cycle indefinitely.
For example, in Figure 4.43, R2 will flood to R3, R3 will flood to R4, R4 will flood
to R2, and R2 will flood (again!) to R3, and so on. This simple scenario results in
the endless cycling of two broadcast packets, one clockwise, and one counterclock-
wise. But there can be an even more calamitous fatal flaw: When a node is con-
nected to more than two other nodes, it will create and forward multiple copies of
the broadcast packet, each of which will create multiple copies of itself (at other
nodes with more than two neighbors), and so on. This broadcast storm, resulting
from the endless multiplication of broadcast packets, would eventually result in so
many broadcast packets being created that the network would be rendered useless.
(See the homework questions at the end of the chapter for a problem analyzing the
rate at which such a broadcast storm grows.)

Controlled Flooding

The key to avoiding a broadcast storm is for a node to judiciously choose when
to flood a packet and (e.g., if it has already received and flooded an earlier copy of
a packet) when not to flood a packet. In practice, this can be done in one of several
ways.

In sequence-number-controlled flooding, a source node puts its address (or
other unique identifier) as well as a broadcast sequence number into a broadcast
packet, then sends the packet to all of its neighbors. Each node maintains a list of
the source address and sequence number of each broadcast packet it has already
received, duplicated, and forwarded. When a node receives a broadcast packet, it
first checks whether the packet is in this list. If so, the packet is dropped; if not, the

4.7 • BROADCAST AND MULTICAST ROUTING 401

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 401

packet is duplicated and forwarded to all the node’s neighbors (except the node from
which the packet has just been received). The Gnutella protocol, discussed in Chap-
ter 2, uses sequence-number-controlled flooding to broadcast queries in its overlay
network. (In Gnutella, message duplication and forwarding is performed at the
application layer rather than at the network layer.)

A second approach to controlled flooding is known as reverse path forwarding
(RPF) [Dalal 1978], also sometimes referred to as reverse path broadcast (RPB). The
idea behind RPF is simple, yet elegant. When a router receives a broadcast packet
with a given source address, it transmits the packet on all of its outgoing links (except
the one on which it was received) only if the packet arrived on the link that is on its
own shortest unicast path back to the source. Otherwise, the router simply discards
the incoming packet without forwarding it on any of its outgoing links. Such a packet
can be dropped because the router knows it either will receive or has already received
a copy of this packet on the link that is on its own shortest path back to the sender.
(You might want to convince yourself that this will, in fact, happen and that looping
and broadcast storms will not occur.) Note that RPF does not use unicast routing to
actually deliver a packet to a destination, nor does it require that a router know the
complete shortest path from itself to the source. RPF need only know the next neigh-
bor on its unicast shortest path to the sender; it uses this neighbor’s identity only to
determine whether or not to flood a received broadcast packet.

Figure 4.44 illustrates RPF. Suppose that the links drawn with thick lines repre-
sent the least-cost paths from the receivers to the source (A). Node A initially broad-
casts a source-A packet to nodes C and B. Node B will forward the source-A packet
it has received from A (since A is on its least-cost path to A) to both C and D. B will
ignore (drop, without forwarding) any source-A packets it receives from any other

402 CHAPTER 4 • THE NETWORK LAYER

A

B

D

G

C

F E

Key:

pkt will be forwarded

pkt not forwarded beyond receiving router

Figure 4.44 � Reverse path forwarding

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 402

4.7 • BROADCAST AND MULTICAST ROUTING 403

a. Broadcast initiated at A b. Broadcast initiated at D

A

B

C

D

G
EF

A

B

C

D

G
EF

Figure 4.45 � Broadcast along a spanning tree

nodes (for example, from routers C or D). Let us now consider node C, which will
receive a source-A packet directly from A as well as from B. Since B is not on C’s
own shortest path back to A, C will ignore any source-A packets it receives from B.
On the other hand, when C receives a source-A packet directly from A, it will for-
ward the packet to nodes B, E, and F.

Spanning-Tree Broadcast

While sequence-number-controlled flooding and RPF avoid broadcast storms, they
do not completely avoid the transmission of redundant broadcast packets. For exam-
ple, in Figure 4.44, nodes B, C, D, E, and F receive either one or two redundant
packets. Ideally, every node should receive only one copy of the broadcast packet.
Examining the tree consisting of the nodes connected by thick lines in Figure
4.45(a), you can see that if broadcast packets were forwarded only along links
within this tree, each and every network node would receive exactly one copy of the
broadcast packet—exactly the solution we were looking for! This tree is an example
of a spanning tree—a tree that contains each and every node in a graph. More for-
mally, a spanning tree of a graph G = (N,E) is a graph G� = (N,E�) such that E� is a
subset of E, G� is connected, G� contains no cycles, and G� contains all the original
nodes in G. If each link has an associated cost and the cost of a tree is the sum of the
link costs, then a spanning tree whose cost is the minimum of all of the graph’s
spanning trees is called (not surprisingly) a minimum spanning tree.

Thus, another approach to providing broadcast is for the network nodes to first
construct a spanning tree. When a source node wants to send a broadcast packet, it
sends the packet out on all of the incident links that belong to the spanning tree. A
node receiving a broadcast packet then forwards the packet to all its neighbors in the

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 403

spanning tree (except the neighbor from which it received the packet). Not only
does spanning tree eliminate redundant broadcast packets, but once in place, the
spanning tree can be used by any node to begin a broadcast, as shown in Figures
4.45(a) and 4.45(b). Note that a node need not be aware of the entire tree; it simply
needs to know which of its neighbors in G are spanning-tree neighbors.

The main complexity associated with the spanning-tree approach is the creation
and maintenance of the spanning tree. Numerous distributed spanning-tree algo-
rithms have been developed [Gallager 1983, Gartner 2003]. We consider only one
simple algorithm here. In the center-based approach to building a spanning tree, a
center node (also known as a rendezvous point or a core) is defined. Nodes then
unicast tree-join messages addressed to the center node. A tree-join message is for-
warded using unicast routing toward the center until it either arrives at a node that
already belongs to the spanning tree or arrives at the center. In either case, the path
that the tree-join message has followed defines the branch of the spanning tree
between the edge node that initiated the tree-join message and the center. One can
think of this new path as being grafted onto the existing spanning tree.

Figure 4.46 illustrates the construction of a center-based spanning tree. Suppose
that node E is selected as the center of the tree. Suppose that node F first joins the tree
and forwards a tree-join message to E. The single link EF becomes the initial span-
ning tree. Node B then joins the spanning tree by sending its tree-join message to E.
Suppose that the unicast path route to E from B is via D. In this case, the tree-join
message results in the path BDE being grafted onto the spanning tree. Node A next
joins the spanning group by forwarding its tree-join message towards E. If A’s uni-
cast path to E is through B, then since B has already joined the spanning tree, the
arrival of A’s tree-join message at B will result in the AB link being immediately
grafted onto the spanning tree. Node C joins the spanning tree next by forwarding
its tree-join message directly to E. Finally, because the unicast routing from G to E

404 CHAPTER 4 • THE NETWORK LAYER

3

2
4

1
5

a. Stepwise construction of spanning tree b. Constructed spanning tree

A

B

C

D

G
EF

A

B

C

D

G
EF

Figure 4.46 � Center-based construction of a spanning tree

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 404

must be via node D, when G sends its tree-join message to E, the GD link is grafted
onto the spanning tree at node D.

Broadcast Algorithms in Practice

Broadcast protocols are used in practice at both the application and network layers.
Gnutella [Gnutella 2009] uses application-level broadcast in order to broadcast
queries for content among Gnutella peers. Here, a link between two distributed
application-level peer processes in the Gnutella network is actually a TCP connec-
tion. Gnutella uses a form of sequence-number-controlled flooding in which a 16-
bit identifier and a 16-bit payload descriptor (which identifies the Gnutella message
type) are used to detect whether a received broadcast query has been previously
received, duplicated, and forwarded. Gnutella also uses a time-to-live (TTL) field to
limit the number of hops over which a flooded query will be forwarded. When a
Gnutella process receives and duplicates a query, it decrements the TTL field before
forwarding the query. Thus, a flooded Gnutella query will only reach peers that are
within a given number (the initial value of TTL) of application-level hops from the
query initiator. Gnutella’s flooding mechanism is thus sometimes referred to as
limited-scope flooding.

A form of sequence-number-controlled flooding is also used to broadcast link-state
advertisements (LSAs) in the OSPF [RFC 2328, Perlman 1999] routing algorithm, and in
the Intermediate-System-to-Intermediate-System (IS-IS) routing algorithm [RFC
1142, Perlman 1999]. OSPF uses a 32-bit sequence number, as well as a 16-bit age field
to identify LSAs. Recall that an OSPF node broadcasts LSAs for its attached links peri-
odically, when a link cost to a neighbor changes, or when a link goes up/down. LSA
sequence numbers are used to detect duplicate LSAs, but also serve a second important
function in OSPF. With flooding, it is possible for an LSA generated by the source at
time t to arrive after a newer LSA that was generated by the same source at time t + d.
The sequence numbers used by the source node allow an older LSA to be distinguished
from a newer LSA. The age field serves a purpose similar to that of a TTL value. The ini-
tial age field value is set to zero and is incremented at each hop as it is flooded, and is also
incremented as it sits in a router’s memory waiting to be flooded. Although we have only
briefly described the LSA flooding algorithm here, we note that designing LSA broadcast
protocols can be very tricky business indeed. [RFC 789; Perlman 1999] describe an inci-
dent in which incorrectly transmitted LSAs by two malfunctioning routers caused an
early version of an LSA flooding algorithm to take down the entire ARPAnet!

4.7.2 Multicast

We’ve seen in the previous section that with broadcast service, packets are delivered
to each and every node in the network. In this section we turn our attention to
multicast service, in which a multicast packet is delivered to only a subset of
network nodes. A number of emerging network applications require the delivery of
packets from one or more senders to a group of receivers. These applications include

4.7 • BROADCAST AND MULTICAST ROUTING 405

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 405

bulk data transfer (for example, the transfer of a software upgrade from the software
developer to users needing the upgrade), streaming continuous media (for example,
the transfer of the audio, video, and text of a live lecture to a set of distributed lec-
ture participants), shared data applications (for example, a whiteboard or teleconfer-
encing application that is shared among many distributed participants), data feeds
(for example, stock quotes), Web cache updating, and interactive gaming (for exam-
ple, distributed interactive virtual environments or multiplayer games).

In multicast communication, we are immediately faced with two problems—
how to identify the receivers of a multicast packet and how to address a packet sent
to these receivers. In the case of unicast communication, the IP address of the
receiver (destination) is carried in each IP unicast datagram and identifies the single
recipient; in the case of broadcast, all nodes need to receive the broadcast packet, so
no destination addresses are needed. But in the case of multicast, we now have mul-
tiple receivers. Does it make sense for each multicast packet to carry the IP
addresses of all of the multiple recipients? While this approach might be workable
with a small number of recipients, it would not scale well to the case of hundreds or
thousands of receivers; the amount of addressing information in the datagram would
swamp the amount of data actually carried in the packet’s payload field. Explicit
identification of the receivers by the sender also requires that the sender know the
identities and addresses of all of the receivers. We will see shortly that there are
cases where this requirement might be undesirable.

For these reasons, in the Internet architecture (and other network architectures
such as ATM [Black 1995]), a multicast packet is addressed using address indirec-
tion. That is, a single identifier is used for the group of receivers, and a copy of the
packet that is addressed to the group using this single identifier is delivered to all of
the multicast receivers associated with that group. In the Internet, the single identifier
that represents a group of receivers is a class D multicast IP address. The group of
receivers associated with a class D address is referred to as a multicast group. The
multicast group abstraction is illustrated in Figure 4.47. Here, four hosts (shown in
shaded color) are associated with the multicast group address of 226.17.30.197 and
will receive all datagrams addressed to that multicast address. The difficulty that we
must still address is the fact that each host has a unique IP unicast address that is com-
pletely independent of the address of the multicast group in which it is participating.

While the multicast group abstraction is simple, it raises a host (pun intended)
of questions. How does a group get started and how does it terminate? How is the
group address chosen? How are new hosts added to the group (either as senders or
receivers)? Can anyone join a group (and send to, or receive from, that group) or is
group membership restricted and, if so, by whom? Do group members know the
identities of the other group members as part of the network-layer protocol? How
do the network nodes interoperate with each other to deliver a multicast datagram to
all group members? For the Internet, the answers to all of these questions involve
the Internet Group Management Protocol [RFC 3376]. So, let us next briefly con-
sider IGMP and then return to these broader questions.

406 CHAPTER 4 • THE NETWORK LAYER

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 406

Internet Group Management Protocol

The IGMP protocol version 3 [RFC 3376] operates between a host and its directly
attached router (informally, we can think of the directly attached router as the first-
hop router that a host would see on a path to any other host outside its own local
network, or the last-hop router on any path to that host), as shown in Figure 4.48.
Figure 4.48 shows three first-hop multicast routers, each connected to its attached
hosts via one outgoing local interface. This local interface is attached to a LAN in
this example, and while each LAN has multiple attached hosts, at most a few of
these hosts will typically belong to a given multicast group at any given time.

IGMP provides the means for a host to inform its attached router that an application
running on the host wants to join a specific multicast group. Given that the scope of
IGMP interaction is limited to a host and its attached router, another protocol is clearly
required to coordinate the multicast routers (including the attached routers) throughout

4.7 • BROADCAST AND MULTICAST ROUTING 407

128.119.40.186

Key:

Router with attached
group member

Router with no attached
group member

128.34.108.63

128.34.108.60

128.59.16.20

mcast group
226.17.30.197

Figure 4.47 � The multicast group: A datagram addressed to the group is
delivered to all members of the multicast group

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 407

the Internet, so that multicast datagrams are routed to their final destinations. This latter
functionality is accomplished by network-layer multicast routing algorithms, such as
those we will consider shortly. Network-layer multicast in the Internet thus consists of
two complementary components: IGMP and multicast routing protocols.

IGMP has only three message types. Like ICMP, IGMP messages are carried
(encapsulated) within an IP datagram, with an IP protocol number of 2. The mem-
bership_query message is sent by a router to all hosts on an attached interface
(for example, to all hosts on a local area network) to determine the set of all multicast
groups that have been joined by the hosts on that interface. Hosts respond to a mem-
bership_query message with an IGMP membership_report message.
membership_report messages can also be generated by a host when an
application first joins a multicast group without waiting for a membership_query
message from the router. The final type of IGMP message is the leave_group
message. Interestingly, this message is optional. But if it is optional, how does a
router detect when a host leaves the multicast group? The answer to this question is
that the router infers that a host is no longer in the multicast group if it no longer
responds to a membership_query message with the given group address. This is
an example of what is sometimes called soft state in an Internet protocol. In a soft-
state protocol, the state (in this case of IGMP, the fact that there are hosts joined to a
given multicast group) is removed via a timeout event (in this case, via a periodic
membership_query message from the router) if it is not explicitly refreshed (in
this case, by a membership_report message from an attached host).

The term soft state was coined by Clark [Clark 1988], who described the notion
of periodic state refresh messages being sent by an end system, and suggested that

408 CHAPTER 4 • THE NETWORK LAYER

Wide-area
multicast
routing

IGMP

IGMP

IGMP

IGMP

Figure 4.48 � The two components of network-layer multicast in the
Internet: IGMP and multicast routing protocols

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 408

with such refresh messages, state could be lost in a crash and then automatically
restored by subsequent refresh messages—all transparently to the end system and
without invoking any explicit crash-recovery procedures:

“. . . the state information would not be critical in maintaining the desired
type of service associated with the flow. Instead, that type of service would
be enforced by the end points, which would periodically send messages to
ensure that the proper type of service was being associated with the flow. In
this way, the state information associated with the flow could be lost in a
crash without permanent disruption of the service features being used. I call
this concept “soft state,” and it may very well permit us to achieve our pri-
mary goals of survivability and flexibility. . .”

It has been argued that soft-state protocols result in simpler control than hard-
state protocols, which not only require state to be explicitly added and removed, but
also require mechanisms to recover from the situation where the entity responsible
for removing state has terminated prematurely or failed. Interesting discussions of
soft state can be found in [Raman 1999; Ji 2003; Lui 2004].

Multicast Routing Algorithms

The multicast routing problem is illustrated in Figure 4.49. Hosts joined to the mul-
ticast group are shaded in color; their immediately attached router is also shaded in
color. As shown in Figure 4.49, only a subset of routers (those with attached hosts that
are joined to the multicast group) actually needs to receive the multicast traffic. In Fig-
ure 4.49, only routers A, B, E, and F need to receive the multicast traffic. Since none
of the hosts attached to router D are joined to the multicast group and since router C
has no attached hosts, neither C nor D needs to receive the multicast group traffic. The
goal of multicast routing, then, is to find a tree of links that connects all of the routers
that have attached hosts belonging to the multicast group. Multicast packets will then
be routed along this tree from the sender to all of the hosts belonging to the multicast
tree. Of course, the tree may contain routers that do not have attached hosts belonging
to the multicast group (for example, in Figure 4.49, it is impossible to connect routers
A, B, E, and F in a tree without involving either router C or D).

In practice, two approaches have been adopted for determining the multicast
routing tree, both of which we have already studied in the context of broadcast
routing, and so we will only mention them in passing here. The two approaches dif-
fer according to whether a single group-shared tree is used to distribute the traffic
for all senders in the group, or whether a source-specific routing tree is constructed
for each individual sender.

• Multicast routing using a group-shared tree. As in the case of spanning-tree broad-
cast, multicast routing over a group-shared tree is based on building a tree that
includes all edge routers with attached hosts belonging to the multicast group.
In practice, a center-based approach is used to construct the multicast routing tree,
with edge routers with attached hosts belonging to the multicast group sending

4.7 • BROADCAST AND MULTICAST ROUTING 409

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 409

(via unicast) join messages addressed to the center node. As in the broadcast case, a
join message is forwarded using unicast routing toward the center until it either
arrives at a router that already belongs to the multicast tree or arrives at the center.
All routers along the path that the join message follows will then forward received
multicast packets to the edge router that initiated the multicast join. A critical ques-
tion for center-based tree multicast routing is the process used to select the center.
Center-selection algorithms are discussed in [Wall 1980; Thaler 1997; Estrin 1997].

• Multicast routing using a source-based tree. While group-shared tree multicast
routing constructs a single, shared routing tree to route packets from all senders,
the second approach constructs a multicast routing tree for each source in the
multicast group. In practice, an RPF algorithm (with source node x) is used to
construct a multicast forwarding tree for multicast datagrams originating at
source x. The RPF broadcast algorithm we studied earlier requires a bit of tweak-
ing for use in multicast. To see why, consider router D in Figure 4.50. Under
broadcast RPF, it would forward packets to router G, even though router G has
no attached hosts that are joined to the multicast group. While this is not so bad
for this case where D has only a single downstream router, G, imagine what
would happen if there were thousands of routers downstream from D! Each
of these thousands of routers would receive unwanted multicast packets.

410 CHAPTER 4 • THE NETWORK LAYER

A

C

F

B

D

E

Figure 4.49 � Multicast hosts, their attached routers, and other routers

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 410

(This scenario is not as far-fetched as it might seem. The initial MBone [Casner
1992; Macedonia 1994], the first global multicast network, suffered from pre-
cisely this problem at first.). The solution to the problem of receiving unwanted
multicast packets under RPF is known as pruning. A multicast router that
receives multicast packets and has no attached hosts joined to that group will send
a prune message to its upstream router. If a router receives prune messages from
each of its downstream routers, then it can forward a prune message upstream.

Multicast Routing in the Internet

The first multicast routing protocol used in the Internet was the Distance-Vector Mul-
ticast Routing Protocol (DVMRP) [RFC 1075]. DVMRP implements source-based
trees with reverse path forwarding and pruning. DVMRP uses an RPF algorithm with
pruning, as discussed above. Perhaps the most widely used Internet multicast routing
protocol is the Protocol-Independent Multicast (PIM) routing protocol, which
explicitly recognizes two multicast distribution scenarios. In dense mode [RFC 3973],
multicast group members are densely located; that is, many or most of the routers in
the area need to be involved in routing multicast datagrams. PIM dense mode is a
flood-and-prune reverse path forwarding technique similar in spirit to DVMRP.

4.7 • BROADCAST AND MULTICAST ROUTING 411

A

C

F

Key:

pkt will be forwarded

E G

B

S: source

D

pkt not forwarded beyond receiving router

Figure 4.50 � Reverse path forwarding, the multicast case

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 411

In sparse mode [RFC 4601], the number of routers with attached group mem-
bers is small with respect to the total number of routers; group members are widely
dispersed. PIM sparse mode uses rendezvous points to set up the multicast distri-
bution tree. In source-specific multicast (SSM) [RFC 3569, RFC 4607], only a
single sender is allowed to send traffic into the multicast tree, considerably simpli-
fying tree construction and maintenance.

When PIM and DVMP are used within a domain, the network operator can con-
figure IP multicast routers within the domain, in much the same way that intra-
domain unicast routing protocols such as RIP, IS-IS, and OSPF can be configured.
But what happens when multicast routes are needed between different domains? Is
there a multicast equivalent of the inter-domain BGP protocol? The answer is (liter-
ally) yes. [RFC 4271] defines multiprotocol extensions to BGP to allow it to carry
routing information for other protocols, including multicast information. The Multi-
cast Source Discovery Protocol (MSDP) [RFC 3618, RFC 4611] can be used to con-
nect together rendezvous points in different PIM sparse mode domains. An excellent
overview of the current state of multicast routing in the Internet is [RFC 5110].

Let us close our discussion of IP multicast by noting that IP multicast has yet to
take off in a big way. For interesting discussions of the Internet multicast service
model and deployment issues, see [Diot 2000, Sharma 2003]. Nonetheless, in spite
of the lack of widespread deployment, network-level multicast is far from “dead.”
Multicast traffic has been carried for many years on Internet 2, and the networks
with which it peers [Internet2 Multicast 2012]. In the United Kingdom, the BBC is
engaged in trials of content distribution via IP multicast [BBC Multicast 2012]. At
the same time, application-level multicast, as we saw with PPLive in Chapter 2 and
in other peer-to-peer systems such as End System Multicast [Chu 2002], provides
multicast distribution of content among peers using application-layer (rather than
network-layer) multicast protocols. Will future multicast services be primarily
implemented in the network layer (in the network core) or in the application layer (at
the network’s edge)? While the current craze for content distribution via peer-to-peer
approaches tips the balance in favor of application-layer multicast at least in the near-
term future, progress continues to be made in IP multicast, and sometimes the race
ultimately goes to the slow and steady.

4.8 Summary

In this chapter, we began our journey into the network core. We learned that the
network layer involves each and every host and router in the network. Because of
this, network-layer protocols are among the most challenging in the protocol stack.

We learned that a router may need to process millions of flows of packets
between different source-destination pairs at the same time. To permit a router to
process such a large number of flows, network designers have learned over the years
that the router’s tasks should be as simple as possible. Many measures can be taken

412 CHAPTER 4 • THE NETWORK LAYER

M04_KURO6201_06_SE_C04_PP2.qxd 1/10/12 9:54 AM Page 412

kurose
Rectangle

