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While lounging in bed or riding buses and subways, people in all corners of the world 
are currently using the Internet to watch movies and television shows on demand. 
Internet movie and television distribution companies such as Netflix and Amazon 
in North America and Youku and Kankan in China have practically become house-
hold names. But people are not only watching Internet videos, they are using sites 
like YouTube to upload and distribute their own user-generated content, becoming 
Internet video producers as well as consumers. Moreover, network applications such 
as Skype, Google Talk, and WeChat (enormously popular in China) allow people 
to not only make “telephone calls” over the Internet, but to also enhance those calls 
with video and multi-person conferencing. In fact, we predict that by the end of the 
current decade most of the video consumption and voice conversations will take 
place end-to-end over the Internet, more typically to wireless devices connected to  
the Internet via cellular and WiFi access networks. Traditional telephony and broad-
cast television are quickly becoming obsolete.

We begin this chapter with a taxonomy of multimedia applications in Sec
tion 9.1. We’ll see that a multimedia application can be classified as either stream-
ing stored audio/video, conversational voice/video-over-IP, or streaming live audio/
video. We’ll see that each of these classes of applications has its own unique service 
requirements that differ significantly from those of traditional elastic applications 
such as e-mail, Web browsing, and remote login. In Section 9.2, we’ll examine video 
streaming in some detail. We’ll explore many of the underlying principles behind 
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video streaming, including client buffering, prefetching, and adapting video qual-
ity to available bandwidth. In Section 9.3, we investigate conversational voice and 
video, which, unlike elastic applications, are highly sensitive to end-to-end delay 
but can tolerate occasional loss of data. Here we’ll examine how techniques such 
as adaptive playout, forward error correction, and error concealment can mitigate 
against network-induced packet loss and delay. We’ll also examine Skype as a case 
study. In Section 9.4, we’ll study RTP and SIP, two popular protocols for real-time 
conversational voice and video applications. In Section 9.5, we’ll investigate mecha-
nisms within the network that can be used to distinguish one class of traffic (e.g., 
delay-sensitive applications such as conversational voice) from another (e.g., elastic 
applications such as browsing Web pages), and provide differentiated service among 
multiple classes of traffic.

9.1	 Multimedia Networking Applications

We define a multimedia network application as any network application that employs 
audio or video. In this section, we provide a taxonomy of multimedia applications. 
We’ll see that each class of applications in the taxonomy has its own unique set of 
service requirements and design issues. But before diving into an in-depth discussion 
of Internet multimedia applications, it is useful to consider the intrinsic characteris-
tics of the audio and video media themselves.

9.1.1 Properties of Video
Perhaps the most salient characteristic of video is its high bit rate. Video distributed 
over the Internet typically ranges from 100 kbps for low-quality video conferencing 
to over 3 Mbps for streaming high-definition movies. To get a sense of how video 
bandwidth demands compare with those of other Internet applications, let’s briefly 
consider three different users, each using a different Internet application. Our first 
user, Frank, is going quickly through photos posted on his friends’ Facebook pages. 
Let’s assume that Frank is looking at a new photo every 10 seconds, and that photos 
are on average 200 Kbytes in size. (As usual, throughout this discussion we make 
the simplifying assumption that 1 Kbyte = 8,000 bits.) Our second user, Martha, 
is streaming music from the Internet (“the cloud”) to her smartphone. Let’s assume 
Martha is using a service such as Spotify to listen to many MP3 songs, one after the 
other, each encoded at a rate of 128 kbps. Our third user, Victor, is watching a video 
that has been encoded at 2 Mbps. Finally, let’s suppose that the session length for all 
three users is 4,000 seconds (approximately 67 minutes). Table 9.1 compares the bit 
rates and the total bytes transferred for these three users. We see that video streaming 
consumes by far the most bandwidth, having a bit rate of more than ten times greater 
than that of the Facebook and music-streaming applications. Therefore, when design-
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ing networked video applications, the first thing we must keep in mind is the high 
bit-rate requirements of video. Given the popularity of video and its high bit rate, it 
is perhaps not surprising that Cisco predicts [Cisco 2015] that streaming and stored 
video will be approximately 80 percent of global consumer Internet traffic by 2019.

Another important characteristic of video is that it can be compressed, thereby 
trading off video quality with bit rate. A video is a sequence of images, typically 
being displayed at a constant rate, for example, at 24 or 30 images per second. An 
uncompressed, digitally encoded image consists of an array of pixels, with each 
pixel encoded into a number of bits to represent luminance and color. There are two 
types of redundancy in video, both of which can be exploited by video compression.  
Spatial redundancy is the redundancy within a given image. Intuitively, an image that 
consists of mostly white space has a high degree of redundancy and can be efficiently 
compressed without significantly sacrificing image quality. Temporal redundancy 
reflects repetition from image to subsequent image. If, for example, an image and the 
subsequent image are exactly the same, there is no reason to re-encode the subsequent 
image; it is instead more efficient simply to indicate during encoding that the subse-
quent image is exactly the same. Today’s off-the-shelf compression algorithms can 
compress a video to essentially any bit rate desired. Of course, the higher the bit rate, 
the better the image quality and the better the overall user viewing experience.

We can also use compression to create multiple versions of the same video, 
each at a different quality level. For example, we can use compression to create, 
say, three versions of the same video, at rates of 300 kbps, 1 Mbps, and 3 Mbps. 
Users can then decide which version they want to watch as a function of their current 
available bandwidth. Users with high-speed Internet connections might choose the 
3 Mbps version; users watching the video over 3G with a smartphone might choose 
the 300 kbps version. Similarly, the video in a video conference application can  
be compressed “on-the-fly” to provide the best video quality given the available  
end-to-end bandwidth between conversing users.

9.1.2 Properties of Audio
Digital audio (including digitized speech and music) has significantly lower band-
width requirements than video. Digital audio, however, has its own unique prop-
erties that must be considered when designing multimedia network applications.  

Table 9.1  ♦  Comparison of bit-rate requirements of three Internet applications

Bit rate Bytes transferred in 67 min

Facebook Frank 160 kbps 80 Mbytes

Martha Music 128 kbps 64 Mbytes

Victor Video 2 Mbps 1 Gbyte
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To understand these properties, let’s first consider how analog audio (which humans 
and musical instruments generate) is converted to a digital signal:

•	 The analog audio signal is sampled at some fixed rate, for example, at 8,000  
samples per second. The value of each sample will be some real number.

•	 Each of the samples is then rounded to one of a finite number of values. This 
operation is referred to as quantization. The number of such finite values—called 
quantization values—is typically a power of two, for example, 256 quantization 
values.

•	 Each of the quantization values is represented by a fixed number of bits. For 
example, if there are 256 quantization values, then each value—and hence each 
audio sample—is represented by one byte. The bit representations of all the sam-
ples are then concatenated together to form the digital representation of the signal. 
As an example, if an analog audio signal is sampled at 8,000 samples per second 
and each sample is quantized and represented by 8 bits, then the resulting digital 
signal will have a rate of 64,000 bits per second. For playback through audio 
speakers, the digital signal can then be converted back—that is, decoded—to an 
analog signal. However, the decoded analog signal is only an approximation of 
the original signal, and the sound quality may be noticeably degraded (for exam-
ple, high-frequency sounds may be missing in the decoded signal). By increasing 
the sampling rate and the number of quantization values, the decoded signal can 
better approximate the original analog signal. Thus (as with video), there is a 
trade-off between the quality of the decoded signal and the bit-rate and storage 
requirements of the digital signal.

The basic encoding technique that we just described is called pulse code modulation 
(PCM). Speech encoding often uses PCM, with a sampling rate of 8,000 samples per 
second and 8 bits per sample, resulting in a rate of 64 kbps. The audio compact disk 
(CD) also uses PCM, with a sampling rate of 44,100 samples per second with 16 
bits per sample; this gives a rate of 705.6 kbps for mono and 1.411 Mbps for stereo.

PCM-encoded speech and music, however, are rarely used in the Internet. 
Instead, as with video, compression techniques are used to reduce the bit rates of 
the stream. Human speech can be compressed to less than 10 kbps and still be intel-
ligible. A popular compression technique for near CD-quality stereo music is MPEG 
1 layer 3, more commonly known as MP3. MP3 encoders can compress to many 
different rates; 128 kbps is the most common encoding rate and produces very little 
sound degradation. A related standard is Advanced Audio Coding (AAC), which 
has been popularized by Apple. As with video, multiple versions of a prerecorded 
audio stream can be created, each at a different bit rate.

Although audio bit rates are generally much less than those of video, users are 
generally much more sensitive to audio glitches than video glitches. Consider, for 
example, a video conference taking place over the Internet. If, from time to time, 
the video signal is lost for a few seconds, the video conference can likely proceed 

M09_KURO4140_07_SE_C09.indd   678 02/03/16   5:04 PM



9.1    •    Multimedia Networking Applications         679

without too much user frustration. If, however, the audio signal is frequently lost, the 
users may have to terminate the session.

9.1.3 Types of Multimedia Network Applications
The Internet supports a large variety of useful and entertaining multimedia applica-
tions. In this subsection, we classify multimedia applications into three broad cat-
egories: (i) streaming stored audio/video, (ii) conversational voice/video-over-IP, 
and (iii) streaming live audio/video. As we will soon see, each of these application 
categories has its own set of service requirements and design issues.

Streaming Stored Audio and Video

To keep the discussion concrete, we focus here on streaming stored video, which typ-
ically combines video and audio components. Streaming stored audio (such as Spo-
tify’s streaming music service) is very similar to streaming stored video, although the 
bit rates are typically much lower.

In this class of applications, the underlying medium is prerecorded video, such 
as a movie, a television show, a prerecorded sporting event, or a prerecorded user-
generated video (such as those commonly seen on YouTube). These prerecorded 
videos are placed on servers, and users send requests to the servers to view the vid-
eos on demand. Many Internet companies today provide streaming video, including 
YouTube (Google), Netflix, Amazon, and Hulu. Streaming stored video has three 
key distinguishing features.

•	 Streaming. In a streaming stored video application, the client typically begins 
video playout within a few seconds after it begins receiving the video from the 
server. This means that the client will be playing out from one location in the 
video while at the same time receiving later parts of the video from the server. 
This technique, known as streaming, avoids having to download the entire video 
file (and incurring a potentially long delay) before playout begins.

•	 Interactivity. Because the media is prerecorded, the user may pause, reposition 
forward, reposition backward, fast-forward, and so on through the video content. 
The time from when the user makes such a request until the action manifests itself 
at the client should be less than a few seconds for acceptable responsiveness.

•	 Continuous playout. Once playout of the video begins, it should proceed accord-
ing to the original timing of the recording. Therefore, data must be received from 
the server in time for its playout at the client; otherwise, users experience video 
frame freezing (when the client waits for the delayed frames) or frame skipping 
(when the client skips over delayed frames).

By far, the most important performance measure for streaming video is average 
throughput. In order to provide continuous playout, the network must provide an 
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average throughput to the streaming application that is at least as large the bit rate of 
the video itself. As we will see in Section 9.2, by using buffering and prefetching, 
it is possible to provide continuous playout even when the throughput fluctuates, 
as long as the average throughput (averaged over 5–10 seconds) remains above the 
video rate [Wang 2008].

For many streaming video applications, prerecorded video is stored on, and 
streamed from, a CDN rather than from a single data center. There are also many 
P2P video streaming applications for which the video is stored on users’ hosts 
(peers), with different chunks of video arriving from different peers that may 
spread around the globe. Given the prominence of Internet video streaming, we 
will explore video streaming in some depth in Section 9.2, paying particular atten-
tion to client buffering, prefetching, adapting quality to bandwidth availability, and 
CDN distribution.

Conversational Voice- and Video-over-IP

Real-time conversational voice over the Internet is often referred to as Internet 
telephony, since, from the user’s perspective, it is similar to the traditional circuit-
switched telephone service. It is also commonly called Voice-over-IP (VoIP). Con-
versational video is similar, except that it includes the video of the participants as 
well as their voices. Most of today’s voice and video conversational systems allow 
users to create conferences with three or more participants. Conversational voice and 
video are widely used in the Internet today, with the Internet companies Skype, QQ, 
and Google Talk boasting hundreds of millions of daily users.

In our discussion of application service requirements in Chapter 2 (Figure 2.4), 
we identified a number of axes along which application requirements can be clas-
sified. Two of these axes—timing considerations and tolerance of data loss—are 
particularly important for conversational voice and video applications. Timing con-
siderations are important because audio and video conversational applications are 
highly delay-sensitive. For a conversation with two or more interacting speakers, the 
delay from when a user speaks or moves until the action is manifested at the other 
end should be less than a few hundred milliseconds. For voice, delays smaller than 
150 milliseconds are not perceived by a human listener, delays between 150 and 400 
milliseconds can be acceptable, and delays exceeding 400 milliseconds can result in 
frustrating, if not completely unintelligible, voice conversations.

On the other hand, conversational multimedia applications are loss-tolerant—
occasional loss only causes occasional glitches in audio/video playback, and these 
losses can often be partially or fully concealed. These delay-sensitive but loss-tolerant 
characteristics are clearly different from those of elastic data applications such as 
Web browsing, e-mail, social networks, and remote login. For elastic applications, 
long delays are annoying but not particularly harmful; the completeness and integrity 
of the transferred data, however, are of paramount importance. We will explore con-
versational voice and video in more depth in Section 9.3, paying particular attention 
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to how adaptive playout, forward error correction, and error concealment can miti-
gate against network-induced packet loss and delay.

Streaming Live Audio and Video

This third class of applications is similar to traditional broadcast radio and television, 
except that transmission takes place over the Internet. These applications allow a 
user to receive a live radio or television transmission—such as a live sporting event 
or an ongoing news event—transmitted from any corner of the world. Today, thou-
sands of radio and television stations around the world are broadcasting content over 
the Internet.

Live, broadcast-like applications often have many users who receive the same 
audio/video program at the same time. In the Internet today, this is typically done 
with CDNs (Section 2.6). As with streaming stored multimedia, the network must 
provide each live multimedia flow with an average throughput that is larger than 
the video consumption rate. Because the event is live, delay can also be an issue, 
although the timing constraints are much less stringent than those for conversational 
voice. Delays of up to ten seconds or so from when the user chooses to view a live 
transmission to when playout begins can be tolerated. We will not cover stream-
ing live media in this book because many of the techniques used for streaming live 
media—initial buffering delay, adaptive bandwidth use, and CDN distribution—are 
similar to those for streaming stored media.

9.2	 Streaming Stored Video

For streaming video applications, prerecorded videos are placed on servers, and 
users send requests to these servers to view the videos on demand. The user may 
watch the video from beginning to end without interruption, may stop watching the 
video well before it ends, or interact with the video by pausing or repositioning to a 
future or past scene. Streaming video systems can be classified into three categories: 
UDP streaming, HTTP streaming, and adaptive HTTP streaming (see Section 
2.6). Although all three types of systems are used in practice, the majority of today’s 
systems employ HTTP streaming and adaptive HTTP streaming.

A common characteristic of all three forms of video streaming is the extensive 
use of client-side application buffering to mitigate the effects of varying end-to-end 
delays and varying amounts of available bandwidth between server and client. For 
streaming video (both stored and live), users generally can tolerate a small several-
second initial delay between when the client requests a video and when video playout 
begins at the client. Consequently, when the video starts to arrive at the client, the cli-
ent need not immediately begin playout, but can instead build up a reserve of video 
in an application buffer. Once the client has built up a reserve of several seconds of 
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buffered-but-not-yet-played video, the client can then begin video playout. There 
are two important advantages provided by such client buffering. First, client-side 
buffering can absorb variations in server-to-client delay. If a particular piece of video 
data is delayed, as long as it arrives before the reserve of received-but-not-yet-played 
video is exhausted, this long delay will not be noticed. Second, if the server-to-client 
bandwidth briefly drops below the video consumption rate, a user can continue to 
enjoy continuous playback, again as long as the client application buffer does not 
become completely drained.

Figure 9.1 illustrates client-side buffering. In this simple example, suppose that 
video is encoded at a fixed bit rate, and thus each video block contains video frames 
that are to be played out over the same fixed amount of time, △. The server transmits 
the first video block at t0, the second block at t0 + △, the third block at t0 + 2△,  
and so on. Once the client begins playout, each block should be played out △ 
time units after the previous block in order to reproduce the timing of the original 
recorded video. Because of the variable end-to-end network delays, different video 
blocks experience different delays. The first video block arrives at the client at t1 and 
the second block arrives at t2. The network delay for the ith block is the horizontal 
distance between the time the block was transmitted by the server and the time it is 
received at the client; note that the network delay varies from one video block to 
another. In this example, if the client were to begin playout as soon as the first block 
arrived at t1, then the second block would not have arrived in time to be played out 
at out at t1 + △. In this case, video playout would either have to stall (waiting for 
block 2 to arrive) or block 2 could be skipped—both resulting in undesirable playout 
impairments. Instead, if the client were to delay the start of playout until t3, when 
blocks 1 through 6 have all arrived, periodic playout can proceed with all blocks hav-
ing been received before their playout time.
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Figure 9.1  ♦  Client playout delay in video streaming
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9.2.1 UDP Streaming
We only briefly discuss UDP streaming here, referring the reader to more in-depth 
discussions of the protocols behind these systems where appropriate. With UDP 
streaming, the server transmits video at a rate that matches the client’s video con-
sumption rate by clocking out the video chunks over UDP at a steady rate. For exam-
ple, if the video consumption rate is 2 Mbps and each UDP packet carries 8,000 
bits of video, then the server would transmit one UDP packet into its socket every 
(8000 bits)/(2 Mbps) = 4 msec. As we learned in Chapter 3, because UDP does 
not employ a congestion-control mechanism, the server can push packets into the 
network at the consumption rate of the video without the rate-control restrictions of 
TCP. UDP streaming typically uses a small client-side buffer, big enough to hold less 
than a second of video.

Before passing the video chunks to UDP, the server will encapsulate the 
video chunks within transport packets specially designed for transporting audio 
and video, using the Real-Time Transport Protocol (RTP) [RFC 3550] or a simi-
lar (possibly proprietary) scheme. We delay our coverage of RTP until Section 
9.3, where we discuss RTP in the context of conversational voice and video 
systems.

Another distinguishing property of UDP streaming is that in addition to the 
server-to-client video stream, the client and server also maintain, in parallel, 
a separate control connection over which the client sends commands regard-
ing session state changes (such as pause, resume, reposition, and so on). The 
Real-Time Streaming Protocol (RTSP) [RFC 2326], explained in some detail 
in the Web site for this textbook, is a popular open protocol for such a control 
connection.

Although UDP streaming has been employed in many open-source systems and 
proprietary products, it suffers from three significant drawbacks. First, due to the 
unpredictable and varying amount of available bandwidth between server and client, 
constant-rate UDP streaming can fail to provide continuous playout. For example, 
consider the scenario where the video consumption rate is 1 Mbps and the server-to-
client available bandwidth is usually more than 1 Mbps, but every few minutes the 
available bandwidth drops below 1 Mbps for several seconds. In such a scenario, a 
UDP streaming system that transmits video at a constant rate of 1 Mbps over RTP/
UDP would likely provide a poor user experience, with freezing or skipped frames 
soon after the available bandwidth falls below 1 Mbps. The second drawback of 
UDP streaming is that it requires a media control server, such as an RTSP server, to 
process client-to-server interactivity requests and to track client state (e.g., the cli-
ent’s playout point in the video, whether the video is being paused or played, and so 
on) for each ongoing client session. This increases the overall cost and complexity of 
deploying a large-scale video-on-demand system. The third drawback is that many 
firewalls are configured to block UDP traffic, preventing the users behind these fire-
walls from receiving UDP video.

M09_KURO4140_07_SE_C09.indd   683 02/03/16   5:04 PM



684         CHAPTER 9    •    MULTIMEDIA NETWORKING

9.2.2 HTTP Streaming
In HTTP streaming, the video is simply stored in an HTTP server as an ordinary 
file with a specific URL. When a user wants to see the video, the client establishes 
a TCP connection with the server and issues an HTTP GET request for that URL. 
The server then sends the video file, within an HTTP response message, as quickly 
as possible, that is, as quickly as TCP congestion control and flow control will allow. 
On the client side, the bytes are collected in a client application buffer. Once the 
number of bytes in this buffer exceeds a predetermined threshold, the client applica-
tion begins playback—specifically, it periodically grabs video frames from the client 
application buffer, decompresses the frames, and displays them on the user’s screen.

We learned in Chapter 3 that when transferring a file over TCP, the server-
to-client transmission rate can vary significantly due to TCP’s congestion control 
mechanism. In particular, it is not uncommon for the transmission rate to vary in a 
“saw-tooth” manner associated with TCP congestion control. Furthermore, packets 
can also be significantly delayed due to TCP’s retransmission mechanism. Because 
of these characteristics of TCP, the conventional wisdom in the 1990s was that 
video streaming would never work well over TCP. Over time, however, designers 
of streaming video systems learned that TCP’s congestion control and reliable-data 
transfer mechanisms do not necessarily preclude continuous playout when client 
buffering and prefetching (discussed in the next section) are used.

The use of HTTP over TCP also allows the video to traverse firewalls and NATs 
more easily (which are often configured to block most UDP traffic but to allow 
most HTTP traffic). Streaming over HTTP also obviates the need for a media con-
trol server, such as an RTSP server, reducing the cost of a large-scale deployment 
over the Internet. Due to all of these advantages, most video streaming applications 
today—including YouTube and Netflix—use HTTP streaming (over TCP) as its 
underlying streaming protocol.

Prefetching Video

As we just learned, client-side buffering can be used to mitigate the effects of vary-
ing end-to-end delays and varying available bandwidth. In our earlier example in 
Figure 9.1, the server transmits video at the rate at which the video is to be played 
out. However, for streaming stored video, the client can attempt to download the 
video at a rate higher than the consumption rate, thereby prefetching video frames 
that are to be consumed in the future. This prefetched video is naturally stored in 
the client application buffer. Such prefetching occurs naturally with TCP streaming, 
since TCP’s congestion avoidance mechanism will attempt to use all of the available 
bandwidth between server and client.

To gain some insight into prefetching, let’s take a look at a simple example. Sup-
pose the video consumption rate is 1 Mbps but the network is capable of delivering 
the video from server to client at a constant rate of 1.5 Mbps. Then the client will 
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not only be able to play out the video with a very small playout delay, but will also 
be able to increase the amount of buffered video data by 500 Kbits every second. 
In this manner, if in the future the client receives data at a rate of less than 1 Mbps 
for a brief period of time, the client will be able to continue to provide continuous 
playback due to the reserve in its buffer. [Wang 2008] shows that when the average 
TCP throughput is roughly twice the media bit rate, streaming over TCP results in 
minimal starvation and low buffering delays.

Client Application Buffer and TCP Buffers

Figure 9.2 illustrates the interaction between client and server for HTTP streaming. 
At the server side, the portion of the video file in white has already been sent into the 
server’s socket, while the darkened portion is what remains to be sent. After “pass-
ing through the socket door,” the bytes are placed in the TCP send buffer before 
being transmitted into the Internet, as described in Chapter 3. In Figure 9.2, because 
the TCP send buffer at the server side is shown to be full, the server is momentarily 
prevented from sending more bytes from the video file into the socket. On the client 
side, the client application (media player) reads bytes from the TCP receive buffer 
(through its client socket) and places the bytes into the client application buffer. At 
the same time, the client application periodically grabs video frames from the client 
application buffer, decompresses the frames, and displays them on the user’s screen. 
Note that if the client application buffer is larger than the video file, then the whole 
process of moving bytes from the server’s storage to the client’s application buffer 
is equivalent to an ordinary file download over HTTP—the client simply pulls the 
video off the server as fast as TCP will allow!
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Figure 9.2  ♦  Streaming stored video over HTTP/TCP
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Consider now what happens when the user pauses the video during the stream-
ing process. During the pause period, bits are not removed from the client application 
buffer, even though bits continue to enter the buffer from the server. If the client 
application buffer is finite, it may eventually become full, which will cause “back 
pressure” all the way back to the server. Specifically, once the client application 
buffer becomes full, bytes can no longer be removed from the client TCP receive 
buffer, so it too becomes full. Once the client receive TCP buffer becomes full, bytes 
can no longer be removed from the server TCP send buffer, so it also becomes full. 
Once the TCP becomes full, the server cannot send any more bytes into the socket. 
Thus, if the user pauses the video, the server may be forced to stop transmitting, in 
which case the server will be blocked until the user resumes the video.

In fact, even during regular playback (that is, without pausing), if the client 
application buffer becomes full, back pressure will cause the TCP buffers to become 
full, which will force the server to reduce its rate. To determine the resulting rate, 
note that when the client application removes f bits, it creates room for f bits in the 
client application buffer, which in turn allows the server to send f additional bits. 
Thus, the server send rate can be no higher than the video consumption rate at the 
client. Therefore, a full client application buffer indirectly imposes a limit on the rate 
that video can be sent from server to client when streaming over HTTP.

Analysis of Video Streaming

Some simple modeling will provide more insight into initial playout delay and freez-
ing due to application buffer depletion. As shown in Figure 9.3, let B denote the size 

Fill rate = x Depletion rate = r
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Q

B

Client application buffer

Figure 9.3  ♦  Analysis of client-side buffering for video streaming
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(in bits) of the client’s application buffer, and let Q denote the number of bits that 
must be buffered before the client application begins playout. (Of course, Q 6 B.) 
Let r denote the video consumption rate—the rate at which the client draws bits out 
of the client application buffer during playback. So, for example, if the video’s frame 
rate is 30 frames/sec, and each (compressed) frame is 100,000 bits, then r = 3 Mbps. 
To see the forest through the trees, we’ll ignore TCP’s send and receive buffers.

Let’s assume that the server sends bits at a constant rate x whenever the client 
buffer is not full. (This is a gross simplification, since TCP’s send rate varies due 
to congestion control; we’ll examine more realistic time-dependent rates x (t) in the 
problems at the end of this chapter.) Suppose at time t = 0, the application buffer is 
empty and video begins arriving to the client application buffer. We now ask at what 
time t = tp does playout begin? And while we are at it, at what time t = tf  does the 
client application buffer become full?

First, let’s determine tp, the time when Q bits have entered the application buffer 
and playout begins. Recall that bits arrive to the client application buffer at rate x and 
no bits are removed from this buffer before playout begins. Thus, the amount of time 
required to build up Q bits (the initial buffering delay) is tp = Q/x.

Now let’s determine tf , the point in time when the client application buffer 
becomes full. We first observe that if x 6 r (that is, if the server send rate is less than 
the video consumption rate), then the client buffer will never become full! Indeed, 
starting at time tp, the buffer will be depleted at rate r and will only be filled at rate 
x 6 r. Eventually the client buffer will empty out entirely, at which time the video 
will freeze on the screen while the client buffer waits another tp seconds to build up 
Q bits of video. Thus, when the available rate in the network is less than the video 
rate, playout will alternate between periods of continuous playout and periods of 
freezing. In a homework problem, you will be asked to determine the length of each 
continuous playout and freezing period as a function of Q, r, and x. Now let’s deter-
mine tf  for when x 7 r. In this case, starting at time tp, the buffer increases from Q 
to B at rate x - r since bits are being depleted at rate r but are arriving at rate x, as 
shown in Figure 9.3. Given these hints, you will be asked in a homework problem 
to determine tf , the time the client buffer becomes full. Note that when the available 
rate in the network is more than the video rate, after the initial buffering delay, the 
user will enjoy continuous playout until the video ends.

Early Termination and Repositioning the Video

HTTP streaming systems often make use of the HTTP byte-range header in the 
HTTP GET request message, which specifies the specific range of bytes the client 
currently wants to retrieve from the desired video. This is particularly useful when the 
user wants to reposition (that is, jump) to a future point in time in the video. When the 
user repositions to a new position, the client sends a new HTTP request, indicating with 
the byte-range header from which byte in the file should the server send data. When 
the server receives the new HTTP request, it can forget about any earlier request and 
instead send bytes beginning with the byte indicated in the byte-range request.
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While we are on the subject of repositioning, we briefly mention that when a 
user repositions to a future point in the video or terminates the video early, some 
prefetched-but-not-yet-viewed data transmitted by the server will go unwatched—
a waste of network bandwidth and server resources. For example, suppose that 
the client buffer is full with B bits at some time t0 into the video, and at this time 
the user repositions to some instant t 7 t0 + B/r into the video, and then watches  
the video to completion from that point on. In this case, all B bits in the buffer will be 
unwatched and the bandwidth and server resources that were used to transmit those 
B bits have been completely wasted. There is significant wasted bandwidth in the 
Internet due to early termination, which can be quite costly, particularly for wireless 
links [Ihm 2011]. For this reason, many streaming systems use only a moderate-size 
client application buffer, or will limit the amount of prefetched video using the byte-
range header in HTTP requests [Rao 2011].

Repositioning and early termination are analogous to cooking a large meal, eat-
ing only a portion of it, and throwing the rest away, thereby wasting food. So the next 
time your parents criticize you for wasting food by not eating all your dinner, you can 
quickly retort by saying they are wasting bandwidth and server resources when they 
reposition while watching movies over the Internet! But, of course, two wrongs do 
not make a right—both food and bandwidth are not to be wasted!

In Sections 9.2.1 and 9.2.2, we covered UDP streaming and HTTP streaming, 
respectively. A third type of streaming is Dynamic Adaptive Streaming over HTTP 
(DASH), which uses multiple versions of the video, each compressed at a different 
rate. DASH is discussed in detail in Section 2.6.2. CDNs are often used to distribute 
stored and live video. CDNs are discussed in detail in Section 2.6.3.

9.3	 Voice-over-IP

Real-time conversational voice over the Internet is often referred to as Internet 
telephony, since, from the user’s perspective, it is similar to the traditional circuit-
switched telephone service. It is also commonly called Voice-over-IP (VoIP). In 
this section we describe the principles and protocols underlying VoIP. Conversa-
tional video is similar in many respects to VoIP, except that it includes the video 
of the participants as well as their voices. To keep the discussion focused and 
concrete, we focus here only on voice in this section rather than combined voice 
and video.

9.3.1 Limitations of the Best-Effort IP Service
The Internet’s network-layer protocol, IP, provides best-effort service. That is to say 
the service makes its best effort to move each datagram from source to destination 
as quickly as possible but makes no promises whatsoever about getting the packet 
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to the destination within some delay bound or about a limit on the percentage of 
packets lost. The lack of such guarantees poses significant challenges to the design 
of real-time conversational applications, which are acutely sensitive to packet delay, 
jitter, and loss.

In this section, we’ll cover several ways in which the performance of VoIP over 
a best-effort network can be enhanced. Our focus will be on application-layer tech-
niques, that is, approaches that do not require any changes in the network core or 
even in the transport layer at the end hosts. To keep the discussion concrete, we’ll 
discuss the limitations of best-effort IP service in the context of a specific VoIP 
example. The sender generates bytes at a rate of 8,000 bytes per second; every  
20 msecs the sender gathers these bytes into a chunk. A chunk and a special header 
(discussed below) are encapsulated in a UDP segment, via a call to the socket interface. 
Thus, the number of bytes in a chunk is (20 msecs) # (8,000 bytes/sec) = 160 bytes, 
and a UDP segment is sent every 20 msecs.

If each packet makes it to the receiver with a constant end-to-end delay, then 
packets arrive at the receiver periodically every 20 msecs. In these ideal conditions, 
the receiver can simply play back each chunk as soon as it arrives. But unfortunately, 
some packets can be lost and most packets will not have the same end-to-end delay, 
even in a lightly congested Internet. For this reason, the receiver must take more care 
in determining (1) when to play back a chunk, and (2) what to do with a missing chunk.

Packet Loss

Consider one of the UDP segments generated by our VoIP application. The UDP 
segment is encapsulated in an IP datagram. As the datagram wanders through the 
network, it passes through router buffers (that is, queues) while waiting for transmis-
sion on outbound links. It is possible that one or more of the buffers in the path from 
sender to receiver is full, in which case the arriving IP datagram may be discarded, 
never to arrive at the receiving application.

Loss could be eliminated by sending the packets over TCP (which provides for 
reliable data transfer) rather than over UDP. However, retransmission mechanisms 
are often considered unacceptable for conversational real-time audio applications 
such as VoIP, because they increase end-to-end delay [Bolot 1996]. Furthermore, 
due to TCP congestion control, packet loss may result in a reduction of the TCP 
sender’s transmission rate to a rate that is lower than the receiver’s drain rate, possi-
bly leading to buffer starvation. This can have a severe impact on voice intelligibility 
at the receiver. For these reasons, most existing VoIP applications run over UDP by 
default. [Baset 2006] reports that UDP is used by Skype unless a user is behind a 
NAT or firewall that blocks UDP segments (in which case TCP is used).

But losing packets is not necessarily as disastrous as one might think. Indeed, 
packet loss rates between 1 and 20 percent can be tolerated, depending on how voice 
is encoded and transmitted, and on how the loss is concealed at the receiver. For 
example, forward error correction (FEC) can help conceal packet loss. We’ll see 
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below that with FEC, redundant information is transmitted along with the original 
information so that some of the lost original data can be recovered from the redundant 
information. Nevertheless, if one or more of the links between sender and receiver is 
severely congested, and packet loss exceeds 10 to 20 percent (for example, on a wire-
less link), then there is really nothing that can be done to achieve acceptable audio 
quality. Clearly, best-effort service has its limitations.

End-to-End Delay

End-to-end delay is the accumulation of transmission, processing, and queuing 
delays in routers; propagation delays in links; and end-system processing delays. 
For real-time conversational applications, such as VoIP, end-to-end delays smaller 
than 150 msecs are not perceived by a human listener; delays between 150 and 400 
msecs can be acceptable but are not ideal; and delays exceeding 400 msecs can seri-
ously hinder the interactivity in voice conversations. The receiving side of a VoIP 
application will typically disregard any packets that are delayed more than a certain 
threshold, for example, more than 400 msecs. Thus, packets that are delayed by more 
than the threshold are effectively lost.

Packet Jitter

A crucial component of end-to-end delay is the varying queuing delays that a packet 
experiences in the network’s routers. Because of these varying delays, the time from 
when a packet is generated at the source until it is received at the receiver can fluc-
tuate from packet to packet, as shown in Figure 9.1. This phenomenon is called 
jitter. As an example, consider two consecutive packets in our VoIP application. 
The sender sends the second packet 20 msecs after sending the first packet. But at 
the receiver, the spacing between these packets can become greater than 20 msecs. 
To see this, suppose the first packet arrives at a nearly empty queue at a router, but 
just before the second packet arrives at the queue a large number of packets from 
other sources arrive at the same queue. Because the first packet experiences a small 
queuing delay and the second packet suffers a large queuing delay at this router, 
the first and second packets become spaced by more than 20 msecs. The spacing 
between consecutive packets can also become less than 20 msecs. To see this, again 
consider two consecutive packets. Suppose the first packet joins the end of a queue 
with a large number of packets, and the second packet arrives at the queue before 
this first packet is transmitted and before any packets from other sources arrive at 
the queue. In this case, our two packets find themselves one right after the other in 
the queue. If the time it takes to transmit a packet on the router’s outbound link is 
less than 20 msecs, then the spacing between first and second packets becomes less 
than 20 msecs.

The situation is analogous to driving cars on roads. Suppose you and your friend 
are each driving in your own cars from San Diego to Phoenix. Suppose you and your 
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friend have similar driving styles, and that you both drive at 100 km/hour, traffic 
permitting. If your friend starts out one hour before you, depending on intervening 
traffic, you may arrive at Phoenix more or less than one hour after your friend.

If the receiver ignores the presence of jitter and plays out chunks as soon as 
they arrive, then the resulting audio quality can easily become unintelligible at the 
receiver. Fortunately, jitter can often be removed by using sequence numbers, 
timestamps, and a playout delay, as discussed below.

9.3.2 Removing Jitter at the Receiver for Audio
For our VoIP application, where packets are being generated periodically, the 
receiver should attempt to provide periodic playout of voice chunks in the presence 
of random network jitter. This is typically done by combining the following two 
mechanisms:

•	 Prepending each chunk with a timestamp. The sender stamps each chunk with the 
time at which the chunk was generated.

•	 Delaying playout of chunks at the receiver. As we saw in our earlier discussion of 
Figure 9.1, the playout delay of the received audio chunks must be long enough 
so that most of the packets are received before their scheduled playout times. This 
playout delay can either be fixed throughout the duration of the audio session or 
vary adaptively during the audio session lifetime.

We now discuss how these three mechanisms, when combined, can alleviate or even 
eliminate the effects of jitter. We examine two playback strategies: fixed playout 
delay and adaptive playout delay.

Fixed Playout Delay

With the fixed-delay strategy, the receiver attempts to play out each chunk exactly q 
msecs after the chunk is generated. So if a chunk is timestamped at the sender at time 
t, the receiver plays out the chunk at time t + q, assuming the chunk has arrived by 
that time. Packets that arrive after their scheduled playout times are discarded and 
considered lost.

What is a good choice for q? VoIP can support delays up to about 400 msecs, 
although a more satisfying conversational experience is achieved with smaller val-
ues of q. On the other hand, if q is made much smaller than 400 msecs, then many 
packets may miss their scheduled playback times due to the network-induced packet 
jitter. Roughly speaking, if large variations in end-to-end delay are typical, it is pref-
erable to use a large q; on the other hand, if delay is small and variations in delay are 
also small, it is preferable to use a small q, perhaps less than 150 msecs.

The trade-off between the playback delay and packet loss is illustrated in  
Figure 9.4. The figure shows the times at which packets are generated and played 
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out for a single talk spurt. Two distinct initial playout delays are considered. As 
shown by the leftmost staircase, the sender generates packets at regular intervals—
say, every 20 msecs. The first packet in this talk spurt is received at time r. As shown 
in the figure, the arrivals of subsequent packets are not evenly spaced due to the 
network jitter.

For the first playout schedule, the fixed initial playout delay is set to p - r. 
With this schedule, the fourth packet does not arrive by its scheduled playout time, 
and the receiver considers it lost. For the second playout schedule, the fixed initial 
playout delay is set to p′ - r. For this schedule, all packets arrive before their sched-
uled playout times, and there is therefore no loss.

Adaptive Playout Delay

The previous example demonstrates an important delay-loss trade-off that arises 
when designing a playout strategy with fixed playout delays. By making the initial 
playout delay large, most packets will make their deadlines and there will therefore 
be negligible loss; however, for conversational services such as VoIP, long delays 
can become bothersome if not intolerable. Ideally, we would like the playout delay to 
be minimized subject to the constraint that the loss be below a few percent.

The natural way to deal with this trade-off is to estimate the network delay and 
the variance of the network delay, and to adjust the playout delay accordingly at the 
beginning of each talk spurt. This adaptive adjustment of playout delays at the begin-
ning of the talk spurts will cause the sender’s silent periods to be compressed and 
elongated; however, compression and elongation of silence by a small amount is not 
noticeable in speech.
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Figure 9.4  ♦  Packet loss for different fixed playout delays
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Following [Ramjee 1994], we now describe a generic algorithm that the receiver 
can use to adaptively adjust its playout delays. To this end, let

ti = �the timestamp of the ith packet = the time the packet was generated by 
the sender

ri = the time packet i is received by receiver

pi = the time packet i is played at receiver

The end-to-end network delay of the ith packet is ri - ti. Due to network jitter, 
this delay will vary from packet to packet. Let di denote an estimate of the average 
network delay upon reception of the ith packet. This estimate is constructed from the 
timestamps as follows:

di = (1 - u) di- 1 + u (ri - ti)

where u is a fixed constant (for example, u = 0.01). Thus di is a smoothed average 
of the observed network delays r1 - t1, . . . , ri - ti. The estimate places more weight 
on the recently observed network delays than on the observed network delays of the 
distant past. This form of estimate should not be completely unfamiliar; a similar 
idea is used to estimate round-trip times in TCP, as discussed in Chapter 3. Let vi 
denote an estimate of the average deviation of the delay from the estimated average 
delay. This estimate is also constructed from the timestamps:

vi = (1 - u) vi- 1 + u ∙ ri - ti - di ∙

The estimates di and vi are calculated for every packet received, although they are 
used only to determine the playout point for the first packet in any talk spurt.

Once having calculated these estimates, the receiver employs the following 
algorithm for the playout of packets. If packet i is the first packet of a talk spurt, its 
playout time, pi, is computed as:

pi = ti + di + Kvi

where K is a positive constant (for example, K = 4). The purpose of the Kvi term 
is to set the playout time far enough into the future so that only a small frac-
tion of the arriving packets in the talk spurt will be lost due to late arrivals. The 
playout point for any subsequent packet in a talk spurt is computed as an offset 
from the point in time when the first packet in the talk spurt was played out. In 
particular, let

qi = pi - ti
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be the length of time from when the first packet in the talk spurt is generated until it 
is played out. If packet j also belongs to this talk spurt, it is played out at time

pj = tj + qi

The algorithm just described makes perfect sense assuming that the receiver can 
tell whether a packet is the first packet in the talk spurt. This can be done by examin-
ing the signal energy in each received packet.

9.3.3 Recovering from Packet Loss
We have discussed in some detail how a VoIP application can deal with packet 
jitter. We now briefly describe several schemes that attempt to preserve accept-
able audio quality in the presence of packet loss. Such schemes are called loss 
recovery schemes. Here we define packet loss in a broad sense: A packet is lost 
either if it never arrives at the receiver or if it arrives after its scheduled playout 
time. Our VoIP example will again serve as a context for describing loss recov-
ery schemes.

As mentioned at the beginning of this section, retransmitting lost packets may 
not be feasible in a real-time conversational application such as VoIP. Indeed, 
retransmitting a packet that has missed its playout deadline serves absolutely no 
purpose. And retransmitting a packet that overflowed a router queue cannot normally 
be accomplished quickly enough. Because of these considerations, VoIP applica-
tions often use some type of loss anticipation scheme. Two types of loss anticipation 
schemes are forward error correction (FEC) and interleaving.

Forward Error Correction (FEC)

The basic idea of FEC is to add redundant information to the original packet 
stream. For the cost of marginally increasing the transmission rate, the redundant 
information can be used to reconstruct approximations or exact versions of some of 
the lost packets. Following [Bolot 1996] and [Perkins 1998], we now outline two 
simple FEC mechanisms. The first mechanism sends a redundant encoded chunk 
after every n chunks. The redundant chunk is obtained by exclusive OR-ing the n 
original chunks [Shacham 1990]. In this manner if any one packet of the group of 
n + 1 packets is lost, the receiver can fully reconstruct the lost packet. But if two 
or more packets in a group are lost, the receiver cannot reconstruct the lost packets. 
By keeping n + 1, the group size, small, a large fraction of the lost packets can 
be recovered when loss is not excessive. However, the smaller the group size, the 
greater the relative increase of the transmission rate. In particular, the transmis-
sion rate increases by a factor of 1/n, so that, if n = 3, then the transmission rate 
increases by 33 percent. Furthermore, this simple scheme increases the playout 
delay, as the receiver must wait to receive the entire group of packets before it can 
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begin playout. For more practical details about how FEC works for multimedia 
transport see [RFC 5109].

The second FEC mechanism is to send a lower-resolution audio stream as the 
redundant information. For example, the sender might create a nominal audio stream 
and a corresponding low-resolution, low-bit rate audio stream. (The nominal stream 
could be a PCM encoding at 64 kbps, and the lower-quality stream could be a GSM 
encoding at 13 kbps.) The low-bit rate stream is referred to as the redundant stream. 
As shown in Figure 9.5, the sender constructs the nth packet by taking the nth chunk 
from the nominal stream and appending to it the (n - 1)st chunk from the redundant 
stream. In this manner, whenever there is nonconsecutive packet loss, the receiver 
can conceal the loss by playing out the low-bit rate encoded chunk that arrives with 
the subsequent packet. Of course, low-bit rate chunks give lower quality than the 
nominal chunks. However, a stream of mostly high-quality chunks, occasional low-
quality chunks, and no missing chunks gives good overall audio quality. Note that in 
this scheme, the receiver only has to receive two packets before playback, so that the 
increased playout delay is small. Furthermore, if the low-bit rate encoding is much 
less than the nominal encoding, then the marginal increase in the transmission rate 
will be small.

In order to cope with consecutive loss, we can use a simple variation. Instead of 
appending just the (n - 1)st low-bit rate chunk to the nth nominal chunk, the sender 
can append the (n - 1)st and (n - 2)nd low-bit rate chunk, or append the (n - 1)st 
and (n - 3)rd low-bit rate chunk, and so on. By appending more low-bit rate chunks 
to each nominal chunk, the audio quality at the receiver becomes acceptable for a 
wider variety of harsh best-effort environments. On the other hand, the additional 
chunks increase the transmission bandwidth and the playout delay.
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Figure 9.5  ♦  Piggybacking lower-quality redundant information
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Interleaving

As an alternative to redundant transmission, a VoIP application can send interleaved 
audio. As shown in Figure 9.6, the sender resequences units of audio data before 
transmission, so that originally adjacent units are separated by a certain distance in 
the transmitted stream. Interleaving can mitigate the effect of packet losses. If, for 
example, units are 5 msecs in length and chunks are 20 msecs (that is, four units per 
chunk), then the first chunk could contain units 1, 5, 9, and 13; the second chunk could 
contain units 2, 6, 10, and 14; and so on. Figure 9.6 shows that the loss of a single 
packet from an interleaved stream results in multiple small gaps in the reconstructed 
stream, as opposed to the single large gap that would occur in a noninterleaved stream.

Interleaving can significantly improve the perceived quality of an audio stream 
[Perkins 1998]. It also has low overhead. The obvious disadvantage of interleaving 
is that it increases latency. This limits its use for conversational applications such as 
VoIP, although it can perform well for streaming stored audio. A major advantage 
of interleaving is that it does not increase the bandwidth requirements of a stream.

Error Concealment

Error concealment schemes attempt to produce a replacement for a lost packet that 
is similar to the original. As discussed in [Perkins 1998], this is possible since audio 
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Figure 9.6  ♦  Sending interleaved audio
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signals, and in particular speech, exhibit large amounts of short-term self-similarity. 
As such, these techniques work for relatively small loss rates (less than 15 percent), 
and for small packets (4–40 msecs). When the loss length approaches the length of 
a phoneme (5–100 msecs) these techniques break down, since whole phonemes may 
be missed by the listener.

Perhaps the simplest form of receiver-based recovery is packet repetition. Packet 
repetition replaces lost packets with copies of the packets that arrived immediately 
before the loss. It has low computational complexity and performs reasonably well. 
Another form of receiver-based recovery is interpolation, which uses audio before 
and after the loss to interpolate a suitable packet to cover the loss. Interpolation per-
forms somewhat better than packet repetition but is significantly more computation-
ally intensive [Perkins 1998].

9.3.4 Case Study: VoIP with Skype
Skype is an immensely popular VoIP application with over 50 million accounts 
active on a daily basis. In addition to providing host-to-host VoIP service, Skype 
offers host-to-phone services, phone-to-host services, and multi-party host-to-host 
video conferencing services. (Here, a host is again any Internet connected IP device, 
including PCs, tablets, and smartphones.) Skype was acquired by Microsoft in 2011.

Because the Skype protocol is proprietary, and because all Skype’s control and 
media packets are encrypted, it is difficult to precisely determine how Skype operates. 
Nevertheless, from the Skype Web site and several measurement studies, researchers 
have learned how Skype generally works [Baset 2006; Guha 2006; Chen 2006; Suh 
2006; Ren 2006; Zhang X 2012]. For both voice and video, the Skype clients have 
at their disposal many different codecs, which are capable of encoding the media at 
a wide range of rates and qualities. For example, video rates for Skype have been 
measured to be as low as 30 kbps for a low-quality session up to almost 1 Mbps for a 
high quality session [Zhang X 2012]. Typically, Skype’s audio quality is better than 
the “POTS” (Plain Old Telephone Service) quality provided by the wire-line phone 
system. (Skype codecs typically sample voice at 16,000 samples/sec or higher, which 
provides richer tones than POTS, which samples at 8,000/sec.) By default, Skype 
sends audio and video packets over UDP. However, control packets are sent over 
TCP, and media packets are also sent over TCP when firewalls block UDP streams. 
Skype uses FEC for loss recovery for both voice and video streams sent over UDP. 
The Skype client also adapts the audio and video streams it sends to current network 
conditions, by changing video quality and FEC overhead [Zhang X 2012].

Skype uses P2P techniques in a number of innovative ways, nicely illustrating 
how P2P can be used in applications that go beyond content distribution and file 
sharing. As with instant messaging, host-to-host Internet telephony is inherently P2P 
since, at the heart of the application, pairs of users (that is, peers) communicate with 
each other in real time. But Skype also employs P2P techniques for two other impor-
tant functions, namely, for user location and for NAT traversal.
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As shown in Figure 9.7, the peers (hosts) in Skype are organized into a hierar-
chical overlay network, with each peer classified as a super peer or an ordinary peer. 
Skype maintains an index that maps Skype usernames to current IP addresses (and 
port numbers). This index is distributed over the super peers. When Alice wants to 
call Bob, her Skype client searches the distributed index to determine Bob’s current 
IP address. Because the Skype protocol is proprietary, it is currently not known how 
the index mappings are organized across the super peers, although some form of 
DHT organization is very possible.

P2P techniques are also used in Skype relays, which are useful for establishing 
calls between hosts in home networks. Many home network configurations provide 
access to the Internet through NATs, as discussed in Chapter 4. Recall that a NAT 
prevents a host from outside the home network from initiating a connection to a 
host within the home network. If both Skype callers have NATs, then there is a 
problem—neither can accept a call initiated by the other, making a call seemingly 
impossible. The clever use of super peers and relays nicely solves this problem. 
Suppose that when Alice signs in, she is assigned to a non-NATed super peer and 
initiates a session to that super peer. (Since Alice is initiating the session, her NAT 
permits this session.) This session allows Alice and her super peer to exchange 
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Figure 9.7  ♦  Skype peers
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control messages. The same happens for Bob when he signs in. Now, when Alice 
wants to call Bob, she informs her super peer, who in turn informs Bob’s super 
peer, who in turn informs Bob of Alice’s incoming call. If Bob accepts the call, the 
two super peers select a third non-NATed super peer—the relay peer—whose job 
will be to relay data between Alice and Bob. Alice’s and Bob’s super peers then 
instruct Alice and Bob respectively to initiate a session with the relay. As shown in  
Figure 9.7, Alice then sends voice packets to the relay over the Alice-to-relay con-
nection (which was initiated by Alice), and the relay then forwards these packets 
over the relay-to-Bob connection (which was initiated by Bob); packets from Bob 
to Alice flow over these same two relay connections in reverse. And voila!—Bob 
and Alice have an end-to-end connection even though neither can accept a session 
originating from outside.

Up to now, our discussion on Skype has focused on calls involving two persons. 
Now let’s examine multi-party audio conference calls. With N 7 2 participants, if 
each user were to send a copy of its audio stream to each of the N - 1 other users, 
then a total of N(N - 1) audio streams would need to be sent into the network to 
support the audio conference. To reduce this bandwidth usage, Skype employs a 
clever distribution technique. Specifically, each user sends its audio stream to the 
conference initiator. The conference initiator combines the audio streams into one 
stream (basically by adding all the audio signals together) and then sends a copy 
of each combined stream to each of the other N - 1 participants. In this manner, 
the number of streams is reduced to 2(N - 1). For ordinary two-person video con-
versations, Skype routes the call peer-to-peer, unless NAT traversal is required, 
in which case the call is relayed through a non-NATed peer, as described earlier. 
For a video conference call involving N 7 2 participants, due to the nature of the 
video medium, Skype does not combine the call into one stream at one location and 
then redistribute the stream to all the participants, as it does for voice calls. Instead, 
each participant’s video stream is routed to a server cluster (located in Estonia as of 
2011), which in turn relays to each participant the N - 1 streams of the N - 1 other 
participants [Zhang X 2012]. You may be wondering why each participant sends a 
copy to a server rather than directly sending a copy of its video stream to each of 
the other N - 1 participants? Indeed, for both approaches, N(N - 1) video streams 
are being collectively received by the N participants in the conference. The reason 
is, because upstream link bandwidths are significantly lower than downstream link 
bandwidths in most access links, the upstream links may not be able to support the 
N - 1 streams with the P2P approach.

VoIP systems such as Skype, WeChat, and Google Talk introduce new privacy 
concerns. Specifically, when Alice and Bob communicate over VoIP, Alice can sniff 
Bob’s IP address and then use geo-location services [MaxMind 2016; Quova 2016] 
to determine Bob’s current location and ISP (for example, his work or home ISP). In 
fact, with Skype it is possible for Alice to block the transmission of certain packets 
during call establishment so that she obtains Bob’s current IP address, say every 
hour, without Bob knowing that he is being tracked and without being on Bob’s 
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contact list. Furthermore, the IP address discovered from Skype can be correlated 
with IP addresses found in BitTorrent, so that Alice can determine the files that Bob 
is downloading [LeBlond 2011]. Moreover, it is possible to partially decrypt a Skype 
call by doing a traffic analysis of the packet sizes in a stream [White 2011].

9.4	 Protocols for Real-Time Conversational 
Applications

Real-time conversational applications, including VoIP and video conferencing, are 
compelling and very popular. It is therefore not surprising that standards bodies, such 
as the IETF and ITU, have been busy for many years (and continue to be busy!) at 
hammering out standards for this class of applications. With the appropriate stand-
ards in place for real-time conversational applications, independent companies are 
creating new products that interoperate with each other. In this section we examine 
RTP and SIP for real-time conversational applications. Both standards are enjoying 
widespread implementation in industry products.

9.4.1 RTP
In the previous section, we learned that the sender side of a VoIP application appends 
header fields to the audio chunks before passing them to the transport layer. These 
header fields include sequence numbers and timestamps. Since most multimedia net-
working applications can make use of sequence numbers and timestamps, it is con-
venient to have a standardized packet structure that includes fields for audio/video 
data, sequence number, and timestamp, as well as other potentially useful fields. 
RTP, defined in RFC 3550, is such a standard. RTP can be used for transporting 
common formats such as PCM, ACC, and MP3 for sound and MPEG and H.263 
for video. It can also be used for transporting proprietary sound and video formats. 
Today, RTP enjoys widespread implementation in many products and research pro-
totypes. It is also complementary to other important real-time interactive protocols, 
such as SIP.

In this section, we provide an introduction to RTP. We also encourage you to 
visit Henning Schulzrinne’s RTP site [Schulzrinne-RTP 2012], which provides a 
wealth of information on the subject. Also, you may want to visit the RAT site [RAT 
2012], which documents VoIP application that uses RTP.

RTP Basics

RTP typically runs on top of UDP. The sending side encapsulates a media chunk 
within an RTP packet, then encapsulates the packet in a UDP segment, and then 
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hands the segment to IP. The receiving side extracts the RTP packet from the UDP 
segment, then extracts the media chunk from the RTP packet, and then passes the 
chunk to the media player for decoding and rendering.

As an example, consider the use of RTP to transport voice. Suppose the voice 
source is PCM-encoded (that is, sampled, quantized, and digitized) at 64 kbps. Fur-
ther suppose that the application collects the encoded data in 20-msec chunks, that 
is, 160 bytes in a chunk. The sending side precedes each chunk of the audio data 
with an RTP header that includes the type of audio encoding, a sequence number, 
and a timestamp. The RTP header is normally 12 bytes. The audio chunk along with 
the RTP header form the RTP packet. The RTP packet is then sent into the UDP 
socket interface. At the receiver side, the application receives the RTP packet from 
its socket interface. The application extracts the audio chunk from the RTP packet 
and uses the header fields of the RTP packet to properly decode and play back the 
audio chunk.

If an application incorporates RTP—instead of a proprietary scheme to provide 
payload type, sequence numbers, or timestamps—then the application will more eas-
ily interoperate with other networked multimedia applications. For example, if two 
different companies develop VoIP software and they both incorporate RTP into their 
product, there may be some hope that a user using one of the VoIP products will 
be able to communicate with a user using the other VoIP product. In Section 9.4.2, 
we’ll see that RTP is often used in conjunction with SIP, an important standard for 
Internet telephony.

It should be emphasized that RTP does not provide any mechanism to ensure 
timely delivery of data or provide other quality-of-service (QoS) guarantees; it 
does not even guarantee delivery of packets or prevent out-of-order delivery of 
packets. Indeed, RTP encapsulation is seen only at the end systems. Routers do 
not distinguish between IP datagrams that carry RTP packets and IP datagrams 
that don’t.

RTP allows each source (for example, a camera or a microphone) to be assigned 
its own independent RTP stream of packets. For example, for a video conference 
between two participants, four RTP streams could be opened—two streams for 
transmitting the audio (one in each direction) and two streams for transmitting the 
video (again, one in each direction). However, many popular encoding techniques—
including MPEG 1 and MPEG 2—bundle the audio and video into a single stream 
during the encoding process. When the audio and video are bundled by the encoder, 
then only one RTP stream is generated in each direction.

RTP packets are not limited to unicast applications. They can also be sent over 
one-to-many and many-to-many multicast trees. For a many-to-many multicast ses-
sion, all of the session’s senders and sources typically use the same multicast group 
for sending their RTP streams. RTP multicast streams belonging together, such as 
audio and video streams emanating from multiple senders in a video conference 
application, belong to an RTP session.
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RTP Packet Header Fields

As shown in Figure 9.8, the four main RTP packet header fields are the payload type, 
sequence number, timestamp, and source identifier fields.

The payload type field in the RTP packet is 7 bits long. For an audio stream, the 
payload type field is used to indicate the type of audio encoding (for example, PCM, 
adaptive delta modulation, linear predictive encoding) that is being used. If a sender 
decides to change the encoding in the middle of a session, the sender can inform the 
receiver of the change through this payload type field. The sender may want to change 
the encoding in order to increase the audio quality or to decrease the RTP stream bit 
rate. Table 9.2 lists some of the audio payload types currently supported by RTP.

For a video stream, the payload type is used to indicate the type of video encoding 
(for example, motion JPEG, MPEG 1, MPEG 2, H.261). Again, the sender can change 
video encoding on the fly during a session. Table 9.3 lists some of the video payload 
types currently supported by RTP. The other important fields are the following:

•	 Sequence number field. The sequence number field is 16 bits long. The sequence 
number increments by one for each RTP packet sent, and may be used by the 
receiver to detect packet loss and to restore packet sequence. For example, if 
the receiver side of the application receives a stream of RTP packets with a gap 
between sequence numbers 86 and 89, then the receiver knows that packets 87 
and 88 are missing. The receiver can then attempt to conceal the lost data.

•	 Timestamp field. The timestamp field is 32 bits long. It reflects the sampling 
instant of the first byte in the RTP data packet. As we saw in the preceding  
section, the receiver can use timestamps to remove packet jitter introduced in 
the network and to provide synchronous playout at the receiver. The timestamp 
is derived from a sampling clock at the sender. As an example, for audio the  
timestamp clock increments by one for each sampling period (for example, each 
125 μsec for an 8 kHz sampling clock); if the audio application generates chunks 
consisting of 160 encoded samples, then the timestamp increases by 160 for each 
RTP packet when the source is active. The timestamp clock continues to increase 
at a constant rate even if the source is inactive.

•	 Synchronization source identifier (SSRC). The SSRC field is 32 bits long. It iden-
tifies the source of the RTP stream. Typically, each stream in an RTP session 
has a distinct SSRC. The SSRC is not the IP address of the sender, but instead is 
a number that the source assigns randomly when the new stream is started. The 
probability that two streams get assigned the same SSRC is very small. Should 
this happen, the two sources pick a new SSRC value.

Payload
type

Sequence
number

Synchronization
source identifier

Miscellaneous
fieldsTimestamp

Figure 9.8  ♦  RTP header fields
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9.4.2 SIP
The Session Initiation Protocol (SIP), defined in [RFC 3261; RFC 5411], is an open 
and lightweight protocol that does the following:

•	 It provides mechanisms for establishing calls between a caller and a callee over 
an IP network. It allows the caller to notify the callee that it wants to start a call. 
It allows the participants to agree on media encodings. It also allows participants 
to end calls.

•	 It provides mechanisms for the caller to determine the current IP address of the 
callee. Users do not have a single, fixed IP address because they may be assigned 
addresses dynamically (using DHCP) and because they may have multiple IP 
devices, each with a different IP address.

•	 It provides mechanisms for call management, such as adding new media streams 
during the call, changing the encoding during the call, inviting new participants 
during the call, call transfer, and call holding.

Table 9.2  ♦  Audio payload types supported by RTP

Payload-Type Number Audio Format Sampling Rate Rate

0 PCM μ-law 8 kHz 64 kbps

1 1016 8 kHz 4.8 kbps

3 GSM 8 kHz 13 kbps

7 LPC 8 kHz 2.4 kbps

9 G.722 16 kHz 48–64 kbps

14 MPEG Audio 90 kHz —

15 G.728 8 kHz 16 kbps

Table 9.3  ♦  Some video payload types supported by RTP

Payload-Type Number Video Format

26 Motion JPEG

31 H.261

32 MPEG 1 video

33 MPEG 2 video

M09_KURO4140_07_SE_C09.indd   703 02/03/16   5:04 PM



704         CHAPTER 9    •    MULTIMEDIA NETWORKING

Setting Up a Call to a Known IP Address

To understand the essence of SIP, it is best to take a look at a concrete example. In 
this example, Alice is at her PC and she wants to call Bob, who is also working at 
his PC. Alice’s and Bob’s PCs are both equipped with SIP-based software for mak-
ing and receiving phone calls. In this initial example, we’ll assume that Alice knows 
the IP address of Bob’s PC. Figure 9.9 illustrates the SIP call-establishment process.

In Figure 9.9, we see that an SIP session begins when Alice sends Bob an INVITE 
message, which resembles an HTTP request message. This INVITE message is sent 
over UDP to the well-known port 5060 for SIP. (SIP messages can also be sent over 
TCP.) The INVITE message includes an identifier for Bob (bob@193.64.210.89), 
an indication of Alice’s current IP address, an indication that Alice desires to 
receive audio, which is to be encoded in format AVP 0 (PCM encoded μ-law) and 

Time Time

167.180.112.24

INVITE bob@193.64.210.89c=IN IP4 167.180.112.24m=audio 38060 RTP/AVP 0

200 OK
c=In IP4 193.64.210.89

m=audio 48753 RTP/AVP 3

Bob’s
terminal rings

193.64.210.89

m Law audio

port 5060

port 5060

port 38060

Alice Bob

port 5060

port 48753

ACK

GSM

Figure 9.9  ♦  SIP call establishment when Alice knows Bob’s IP address
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encapsulated in RTP, and an indication that she wants to receive the RTP packets 
on port 38060. After receiving Alice’s INVITE message, Bob sends an SIP response 
message, which resembles an HTTP response message. This response SIP message 
is also sent to the SIP port 5060. Bob’s response includes a 200 OK as well as an 
indication of his IP address, his desired encoding and packetization for reception, and 
his port number to which the audio packets should be sent. Note that in this example 
Alice and Bob are going to use different audio-encoding mechanisms: Alice is asked 
to encode her audio with GSM whereas Bob is asked to encode his audio with PCM 
μ-law. After receiving Bob’s response, Alice sends Bob an SIP acknowledgment 
message. After this SIP transaction, Bob and Alice can talk. (For visual convenience, 
Figure 9.9 shows Alice talking after Bob, but in truth they would normally talk at the 
same time.) Bob will encode and packetize the audio as requested and send the audio 
packets to port number 38060 at IP address 167.180.112.24. Alice will also encode 
and packetize the audio as requested and send the audio packets to port number 
48753 at IP address 193.64.210.89.

From this simple example, we have learned a number of key characteristics of 
SIP. First, SIP is an out-of-band protocol: The SIP messages are sent and received in 
sockets that are different from those used for sending and receiving the media data. 
Second, the SIP messages themselves are ASCII-readable and resemble HTTP mes-
sages. Third, SIP requires all messages to be acknowledged, so it can run over UDP 
or TCP.

In this example, let’s consider what would happen if Bob does not have a PCM 
μ-law codec for encoding audio. In this case, instead of responding with 200 OK, 
Bob would likely respond with a 606 Not Acceptable and list in the message all the 
codecs he can use. Alice would then choose one of the listed codecs and send another 
INVITE message, this time advertising the chosen codec. Bob could also simply 
reject the call by sending one of many possible rejection reply codes. (There are 
many such codes, including “busy,” “gone,” “payment required,” and “forbidden.”)

SIP Addresses

In the previous example, Bob’s SIP address is sip:bob@193.64.210.89. However, we 
expect many—if not most—SIP addresses to resemble e-mail addresses. For exam-
ple, Bob’s address might be sip:bob@domain.com. When Alice’s SIP device sends 
an INVITE message, the message would include this e-mail-like address; the SIP 
infrastructure would then route the message to the IP device that Bob is currently 
using (as we’ll discuss below). Other possible forms for the SIP address could be 
Bob’s legacy phone number or simply Bob’s first/middle/last name (assuming it is 
unique).

An interesting feature of SIP addresses is that they can be included in Web 
pages, just as people’s e-mail addresses are included in Web pages with the mailto 
URL. For example, suppose Bob has a personal homepage, and he wants to provide 
a means for visitors to the homepage to call him. He could then simply include the 
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URL sip:bob@domain.com. When the visitor clicks on the URL, the SIP application 
in the visitor’s device is launched and an INVITE message is sent to Bob.

SIP Messages

In this short introduction to SIP, we’ll not cover all SIP message types and headers. 
Instead, we’ll take a brief look at the SIP INVITE message, along with a few com-
mon header lines. Let us again suppose that Alice wants to initiate a VoIP call to 
Bob, and this time Alice knows only Bob’s SIP address, bob@domain.com, and does 
not know the IP address of the device that Bob is currently using. Then her message 
might look something like this:

INVITE sip:bob@domain.com SIP/2.0
Via: SIP/2.0/UDP 167.180.112.24
From: sip:alice@hereway.com
To: sip:bob@domain.com
Call-ID: a2e3a@pigeon.hereway.com
Content-Type: application/sdp
Content-Length: 885

c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0

The INVITE line includes the SIP version, as does an HTTP request message. 
Whenever an SIP message passes through an SIP device (including the device that origi-
nates the message), it attaches a Via header, which indicates the IP address of the device. 
(We’ll see soon that the typical INVITE message passes through many SIP devices 
before reaching the callee’s SIP application.) Similar to an e-mail message, the SIP mes-
sage includes a From header line and a To header line. The message includes a Call-ID, 
which uniquely identifies the call (similar to the message-ID in e-mail). It includes a 
Content-Type header line, which defines the format used to describe the content con-
tained in the SIP message. It also includes a Content-Length header line, which provides 
the length in bytes of the content in the message. Finally, after a carriage return and line 
feed, the message contains the content. In this case, the content provides information 
about Alice’s IP address and how Alice wants to receive the audio.

Name Translation and User Location

In the example in Figure 9.9, we assumed that Alice’s SIP device knew the IP address 
where Bob could be contacted. But this assumption is quite unrealistic, not only 
because IP addresses are often dynamically assigned with DHCP, but also because 
Bob may have multiple IP devices (for example, different devices for his home, 
work, and car). So now let us suppose that Alice knows only Bob’s e-mail address, 

M09_KURO4140_07_SE_C09.indd   706 02/03/16   5:04 PM



9.4    •    Protocols for Real-Time Conversational Applications         707

bob@domain.com, and that this same address is used for SIP-based calls. In this 
case, Alice needs to obtain the IP address of the device that the user bob@domain.
com is currently using. To find this out, Alice creates an INVITE message that begins 
with INVITE bob@domain.com SIP/2.0 and sends this message to an SIP proxy. 
The proxy will respond with an SIP reply that might include the IP address of the  
device that bob@domain.com is currently using. Alternatively, the reply might 
include the IP address of Bob’s voicemail box, or it might include a URL of a Web 
page (that says “Bob is sleeping. Leave me alone!”). Also, the result returned by the 
proxy might depend on the caller: If the call is from Bob’s wife, he might accept 
the call and supply his IP address; if the call is from Bob’s mother-in-law, he might 
respond with the URL that points to the I-am-sleeping Web page!

Now, you are probably wondering, how can the proxy server determine the cur-
rent IP address for bob@domain.com? To answer this question, we need to say a few 
words about another SIP device, the SIP registrar. Every SIP user has an associated 
registrar. Whenever a user launches an SIP application on a device, the application 
sends an SIP register message to the registrar, informing the registrar of its current 
IP address. For example, when Bob launches his SIP application on his PDA, the 
application would send a message along the lines of:

REGISTER sip:domain.com SIP/2.0
Via: SIP/2.0/UDP 193.64.210.89
From: sip:bob@domain.com
To: sip:bob@domain.com
Expires: 3600

Bob’s registrar keeps track of Bob’s current IP address. Whenever Bob switches 
to a new SIP device, the new device sends a new register message, indicating the 
new IP address. Also, if Bob remains at the same device for an extended period of 
time, the device will send refresh register messages, indicating that the most recently 
sent IP address is still valid. (In the example above, refresh messages need to be sent 
every 3600 seconds to maintain the address at the registrar server.) It is worth noting 
that the registrar is analogous to a DNS authoritative name server: The DNS server 
translates fixed host names to fixed IP addresses; the SIP registrar translates fixed 
human identifiers (for example, bob@domain.com) to dynamic IP addresses. Often 
SIP registrars and SIP proxies are run on the same host.

Now let’s examine how Alice’s SIP proxy server obtains Bob’s current IP 
address. From the preceding discussion we see that the proxy server simply needs 
to forward Alice’s INVITE message to Bob’s registrar/proxy. The registrar/proxy 
could then forward the message to Bob’s current SIP device. Finally, Bob, having 
now received Alice’s INVITE message, could send an SIP response to Alice.

As an example, consider Figure 9.10, in which jim@umass.edu, currently 
working on 217.123.56.89, wants to initiate a Voice-over-IP (VoIP) session with  
keith@upenn.edu, currently working on 197.87.54.21. The following steps are taken: 
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(1) Jim sends an INVITE message to the umass SIP proxy. (2) The proxy does a DNS 
lookup on the SIP registrar upenn.edu (not shown in diagram) and then forwards the 
message to the registrar server. (3) Because keith@upenn.edu is no longer registered 
at the upenn registrar, the upenn registrar sends a redirect response, indicating that 
it should try keith@nyu.edu. (4) The umass proxy sends an INVITE message to the 
NYU SIP registrar. (5) The NYU registrar knows the IP address of keith@upenn.
edu and forwards the INVITE message to the host 197.87.54.21, which is running 
Keith’s SIP client. (6–8) An SIP response is sent back through registrars/proxies to 
the SIP client on 217.123.56.89. (9) Media is sent directly between the two clients. 
(There is also an SIP acknowledgment message, which is not shown.)

Our discussion of SIP has focused on call initiation for voice calls. SIP, being 
a signaling protocol for initiating and ending calls in general, can be used for video 
conference calls as well as for text-based sessions. In fact, SIP has become a fun-
damental component in many instant messaging applications. Readers desiring to 
learn more about SIP are encouraged to visit Henning Schulzrinne’s SIP Web site 
[Schulzrinne-SIP 2016]. In particular, on this site you will find open source software 
for SIP clients and servers [SIP Software 2016].
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Figure 9.10  ♦  Session initiation, involving SIP proxies and registrars
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9.5	 Network Support for Multimedia

In Sections 9.2 through 9.4, we learned how application-level mechanisms such as 
client buffering, prefetching, adapting media quality to available bandwidth, adap-
tive playout, and loss mitigation techniques can be used by multimedia applications 
to improve a multimedia application’s performance. We also learned how content 
distribution networks and P2P overlay networks can be used to provide a system-
level approach for delivering multimedia content. These techniques and approaches 
are all designed to be used in today’s best-effort Internet. Indeed, they are in use 
today precisely because the Internet provides only a single, best-effort class of ser-
vice. But as designers of computer networks, we can’t help but ask whether the 
network (rather than the applications or application-level infrastructure alone) might 
provide mechanisms to support multimedia content delivery. As we’ll see shortly, 
the answer is, of course, “yes”! But we’ll also see that a number of these new  
network-level mechanisms have yet to be widely deployed. This may be due to their 
complexity and to the fact that application-level techniques together with best-effort 
service and properly dimensioned network resources (for example, bandwidth) can 
indeed provide a “good-enough” (even if not-always-perfect) end-to-end multimedia 
delivery service.

Table 9.4 summarizes three broad approaches towards providing network-level 
support for multimedia applications.

•	 Making the best of best-effort service. The application-level mechanisms and 
infrastructure that we studied in Sections 9.2 through 9.4 can be successfully used 
in a well-dimensioned network where packet loss and excessive end-to-end delay 
rarely occur. When demand increases are forecasted, the ISPs deploy additional 
bandwidth and switching capacity to continue to ensure satisfactory delay and 
packet-loss performance [Huang 2005]. We’ll discuss such network dimension-
ing further in Section 9.5.1.

•	 Differentiated service. Since the early days of the Internet, it’s been envisioned 
that different types of traffic (for example, as indicated in the Type-of-Service 
field in the IP4v packet header) could be provided with different classes of ser-
vice, rather than a single one-size-fits-all best-effort service. With differentiated 
service, one type of traffic might be given strict priority over another class of traf-
fic when both types of traffic are queued at a router. For example, packets belong-
ing to a real-time conversational application might be given priority over other 
packets due to their stringent delay constraints. Introducing differentiated service 
into the network will require new mechanisms for packet marking (indicating a 
packet’s class of service), packet scheduling, and more. We’ll cover differenti-
ated service, and new network mechanisms needed to implement this service, in 
Sections 9.5.2 and 9.5.3.
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•	 Per-connection Quality-of-Service (QoS) Guarantees. With per-connection 
QoS guarantees, each instance of an application explicitly reserves end-to-end  
bandwidth and thus has a guaranteed end-to-end performance. A hard guarantee 
means the application will receive its requested quality of service (QoS) with cer-
tainty. A soft guarantee means the application will receive its requested quality 
of service with high probability. For example, if a user wants to make a VoIP call 
from Host A to Host B, the user’s VoIP application reserves bandwidth explicitly 
in each link along a route between the two hosts. But permitting applications to 
make reservations and requiring the network to honor the reservations requires 
some big changes. First, we need a protocol that, on behalf of the applications, 
reserves link bandwidth on the paths from the senders to their receivers. Second, 
we’ll need new scheduling policies in the router queues so that per-connection 
bandwidth reservations can be honored. Finally, in order to make a reservation, 
the applications must give the network a description of the traffic that they intend 
to send into the network and the network will need to police each application’s 
traffic to make sure that it abides by that description. These mechanisms, when 
combined, require new and complex software in hosts and routers. Because  
per-connection QoS guaranteed service has not seen significant deployment, 
we’ll cover these mechanisms only briefly in Section 9.5.4.

Table 9.4  ♦  �Three network-level approaches to supporting multimedia  
applications

Approach Granularity Guarantee Mechanisms Complexity Deployment to date

Making the 
best of best-
effort service

all traffic 
treated 
equally

none, or  
soft

application-layer 
support, CDNs, 
overlays, network-
level resource 
provisioning

minimal everywhere

Differentiated 
service

different 
classes 
of traffic 
treated 
differently

none,  
or soft

packet marking, 
policing, 
scheduling

medium some

Per-connection 
Quality-of-
Service (QoS) 
Guarantees

each 
source-
destination 
flows 
treated 
differently

soft or hard,  
once flow  
is admitted

packet marking, 
policing, 
scheduling; call 
admission and 
signaling

light little
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9.5.1 Dimensioning Best-Effort Networks
Fundamentally, the difficulty in supporting multimedia applications arises from 
their stringent performance requirements—low end-to-end packet delay, delay 
jitter, and loss—and the fact that packet delay, delay jitter, and loss occur when-
ever the network becomes congested. A first approach to improving the quality of 
multimedia applications—an approach that can often be used to solve just about 
any problem where resources are constrained—is simply to “throw money at the 
problem” and thus simply avoid resource contention. In the case of networked 
multimedia, this means providing enough link capacity throughout the network 
so that network congestion, and its consequent packet delay and loss, never (or 
only very rarely) occurs. With enough link capacity, packets could zip through 
today’s Internet without queuing delay or loss. From many perspectives this is an 
ideal situation—multimedia applications would perform perfectly, users would 
be happy, and this could all be achieved with no changes to Internet’s best-effort 
architecture.

The question, of course, is how much capacity is “enough” to achieve this nirvana, 
and whether the costs of providing “enough” bandwidth are practical from a business 
standpoint to the ISPs. The question of how much capacity to provide at network 
links in a given topology to achieve a given level of performance is often known as 
bandwidth provisioning. The even more complicated problem of how to design a 
network topology (where to place routers, how to interconnect routers with links, and 
what capacity to assign to links) to achieve a given level of end-to-end performance 
is a network design problem often referred to as network dimensioning. Both band-
width provisioning and network dimensioning are complex topics, well beyond the 
scope of this textbook. We note here, however, that the following issues must be 
addressed in order to predict application-level performance between two network 
end points, and thus provision enough capacity to meet an application’s performance 
requirements.

•	 Models of traffic demand between network end points. Models may need to be 
specified at both the call level (for example, users “arriving” to the network and 
starting up end-to-end applications) and at the packet level (for example, packets 
being generated by ongoing applications). Note that workload may change over 
time.

•	 Well-defined performance requirements. For example, a performance require-
ment for supporting delay-sensitive traffic, such as a conversational multimedia 
application, might be that the probability that the end-to-end delay of the packet 
is greater than a maximum tolerable delay be less than some small value [Fraleigh 
2003].

•	 Models to predict end-to-end performance for a given workload model, and  
techniques to find a minimal cost bandwidth allocation that will result in all user 
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requirements being met. Here, researchers are busy developing performance 
models that can quantify performance for a given workload, and optimization 
techniques to find minimal-cost bandwidth allocations meeting performance 
requirements.

Given that today’s best-effort Internet could (from a technology standpoint) sup-
port multimedia traffic at an appropriate performance level if it were dimensioned 
to do so, the natural question is why today’s Internet doesn’t do so. The answers 
are primarily economic and organizational. From an economic standpoint, would 
users be willing to pay their ISPs enough for the ISPs to install sufficient bandwidth 
to support multimedia applications over a best-effort Internet? The organizational 
issues are perhaps even more daunting. Note that an end-to-end path between two 
multimedia end points will pass through the networks of multiple ISPs. From an 
organizational standpoint, would these ISPs be willing to cooperate (perhaps with 
revenue sharing) to ensure that the end-to-end path is properly dimensioned to sup-
port multimedia applications? For a perspective on these economic and organiza-
tional issues, see [Davies 2005]. For a perspective on provisioning tier-1 backbone 
networks to support delay-sensitive traffic, see [Fraleigh 2003].

9.5.2 Providing Multiple Classes of Service
Perhaps the simplest enhancement to the one-size-fits-all best-effort service in 
today’s Internet is to divide traffic into classes, and provide different levels of ser-
vice to these different classes of traffic. For example, an ISP might well want to 
provide a higher class of service to delay-sensitive Voice-over-IP or teleconferenc-
ing traffic (and charge more for this service!) than to elastic traffic such as e-mail or 
HTTP. Alternatively, an ISP may simply want to provide a higher quality of service 
to customers willing to pay more for this improved service. A number of residential 
wired-access ISPs and cellular wireless-access ISPs have adopted such tiered lev-
els of service—with platinum-service subscribers receiving better performance than 
gold- or silver-service subscribers.

We’re all familiar with different classes of service from our everyday lives—
first-class airline passengers get better service than business-class passengers, who 
in turn get better service than those of us who fly economy class; VIPs are provided 
immediate entry to events while everyone else waits in line; elders are revered in 
some countries and provided seats of honor and the finest food at a table. It’s impor-
tant to note that such differential service is provided among aggregates of traffic, 
that is, among classes of traffic, not among individual connections. For example, all 
first-class passengers are handled the same (with no first-class passenger receiving 
any better treatment than any other first-class passenger), just as all VoIP packets 
would receive the same treatment within the network, independent of the particular 
end-to-end connection to which they belong. As we will see, by dealing with a small 
number of traffic aggregates, rather than a large number of individual connections, 
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the new network mechanisms required to provide better-than-best service can be 
kept relatively simple.

The early Internet designers clearly had this notion of multiple classes of ser-
vice in mind. Recall the type-of-service (ToS) field in the IPv4 header discussed in 
Chapter 4. IEN123 [ISI 1979] describes the ToS field also present in an ancestor of 
the IPv4 datagram as follows: “The Type of Service [field] provides an indication 
of the abstract parameters of the quality of service desired. These parameters are to 
be used to guide the selection of the actual service parameters when transmitting a 
datagram through a particular network. Several networks offer service precedence, 
which somehow treats high precedence traffic as more important that other traffic.” 
More than four decades ago, the vision of providing different levels of service to dif-
ferent classes of traffic was clear! However, it’s taken us an equally long period of 
time to realize this vision.

Motivating Scenarios

Let’s begin our discussion of network mechanisms for providing multiple classes of 
service with a few motivating scenarios.

Figure 9.11 shows a simple network scenario in which two application packet 
flows originate on Hosts H1 and H2 on one LAN and are destined for Hosts H3 and 
H4 on another LAN. The routers on the two LANs are connected by a 1.5 Mbps link. 
Let’s assume the LAN speeds are significantly higher than 1.5 Mbps, and focus on 
the output queue of router R1; it is here that packet delay and packet loss will occur 
if the aggregate sending rate of H1 and H2 exceeds 1.5 Mbps. Let’s further suppose 
that a 1 Mbps audio application (for example, a CD-quality audio call) shares the 

R1

1.5 Mbps link R2

H2

H1

H4

H3

Figure 9.11  ♦  Competing audio and HTTP applications
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1.5 Mbps link between R1 and R2 with an HTTP Web-browsing application that is 
downloading a Web page from H2 to H4.

In the best-effort Internet, the audio and HTTP packets are mixed in the output 
queue at R1 and (typically) transmitted in a first-in-first-out (FIFO) order. In this 
scenario, a burst of packets from the Web server could potentially fill up the queue, 
causing IP audio packets to be excessively delayed or lost due to buffer overflow 
at R1. How should we solve this potential problem? Given that the HTTP Web-
browsing application does not have time constraints, our intuition might be to give 
strict priority to audio packets at R1. Under a strict priority scheduling discipline, an 
audio packet in the R1 output buffer would always be transmitted before any HTTP 
packet in the R1 output buffer. The link from R1 to R2 would look like a dedicated 
link of 1.5 Mbps to the audio traffic, with HTTP traffic using the R1-to-R2 link only 
when no audio traffic is queued. In order for R1 to distinguish between the audio and 
HTTP packets in its queue, each packet must be marked as belonging to one of these 
two classes of traffic. This was the original goal of the type-of-service (ToS) field in 
IPv4. As obvious as this might seem, this then is our first insight into mechanisms 
needed to provide multiple classes of traffic:

Insight 1: Packet marking allows a router to distinguish among packets 
belonging to different classes of traffic.

Note that although our example considers a competing multimedia and elastic 
flow, the same insight applies to the case that platinum, gold, and silver classes of 
service are implemented—a packet-marking mechanism is still needed to indicate 
that class of service to which a packet belongs.

Now suppose that the router is configured to give priority to packets marked 
as belonging to the 1 Mbps audio application. Since the outgoing link speed is 1.5 
Mbps, even though the HTTP packets receive lower priority, they can still, on aver-
age, receive 0.5 Mbps of transmission service. But what happens if the audio applica-
tion starts sending packets at a rate of 1.5 Mbps or higher (either maliciously or due 
to an error in the application)? In this case, the HTTP packets will starve, that is, they 
will not receive any service on the R1-to-R2 link. Similar problems would occur if 
multiple applications (for example, multiple audio calls), all with the same class of 
service as the audio application, were sharing the link’s bandwidth; they too could 
collectively starve the FTP session. Ideally, one wants a degree of isolation among 
classes of traffic so that one class of traffic can be protected from the other. This pro-
tection could be implemented at different places in the network—at each and every 
router, at first entry to the network, or at inter-domain network boundaries. This then 
is our second insight:

Insight 2: It is desirable to provide a degree of traffic isolation among 
classes so that one class is not adversely affected by another class of traffic 
that misbehaves.
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We’ll examine several specific mechanisms for providing such isolation among 
traffic classes. We note here that two broad approaches can be taken. First, it is pos-
sible to perform traffic policing, as shown in Figure 9.12. If a traffic class or flow 
must meet certain criteria (for example, that the audio flow not exceed a peak rate of 
1 Mbps), then a policing mechanism can be put into place to ensure that these criteria 
are indeed observed. If the policed application misbehaves, the policing mechanism 
will take some action (for example, drop or delay packets that are in violation of 
the criteria) so that the traffic actually entering the network conforms to the criteria. 
The leaky bucket mechanism that we’ll examine shortly is perhaps the most widely 
used policing mechanism. In Figure 9.12, the packet classification and marking 
mechanism (Insight 1) and the policing mechanism (Insight 2) are both implemented 
together at the network’s edge, either in the end system or at an edge router.

A complementary approach for providing isolation among traffic classes is for 
the link-level packet-scheduling mechanism to explicitly allocate a fixed amount of 
link bandwidth to each class. For example, the audio class could be allocated 1 Mbps 
at R1, and the HTTP class could be allocated 0.5 Mbps. In this case, the audio and 

R1

1.5 Mbps link

Packet marking
and policing

Metering and policing Marks

R2

H2

H1

Key:

H4

H3

Figure 9.12  ♦  Policing (and marking) the audio and HTTP traffic classes
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HTTP flows see a logical link with capacity 1.0 and 0.5 Mbps, respectively, as shown 
in Figure 9.13. With strict enforcement of the link-level allocation of bandwidth, a 
class can use only the amount of bandwidth that has been allocated; in particular, it 
cannot utilize bandwidth that is not currently being used by others. For example, if 
the audio flow goes silent (for example, if the speaker pauses and generates no audio 
packets), the HTTP flow would still not be able to transmit more than 0.5 Mbps over 
the R1-to-R2 link, even though the audio flow’s 1 Mbps bandwidth allocation is not 
being used at that moment. Since bandwidth is a “use-it-or-lose-it” resource, there is 
no reason to prevent HTTP traffic from using bandwidth not used by the audio traf-
fic. We’d like to use bandwidth as efficiently as possible, never wasting it when it 
could be otherwise used. This gives rise to our third insight:

Insight 3: While providing isolation among classes or flows, it is desirable 
to use resources (for example, link bandwidth and buffers) as efficiently as 
possible.

Recall from our discussion in Sections 1.3 and 4.2 that packets belonging to vari-
ous network flows are multiplexed and queued for transmission at the output buff-
ers associated with a link. The manner in which queued packets are selected for 
transmission on the link is known as the link-scheduling discipline, and was 
discussed in detail in Section 4.2. Recall that in Section 4.2 three link-scheduling 
disciplines were discussed, namely, FIFO, priority queuing, and Weighted Fair  
Queuing (WFQ). We’ll see soon see that WFQ will play a particularly important role 
for isolating the traffic classes.

R1

1.5 Mbps link

1.0 Mbps
logical link

0.5 Mbps
logical link

R2

H2

H1

H4

H3

Figure 9.13  ♦  Logical isolation of audio and HTTP traffic classes
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The Leaky Bucket
One of our earlier insights was that policing, the regulation of the rate at which a 

class or flow (we will assume the unit of policing is a flow in our discussion below) is 
allowed to inject packets into the network, is an important QoS mechanism. But what 
aspects of a flow’s packet rate should be policed? We can identify three important 
policing criteria, each differing from the other according to the time scale over which 
the packet flow is policed:

•	 Average rate. The network may wish to limit the long-term average rate (packets 
per time interval) at which a flow’s packets can be sent into the network. A crucial 
issue here is the interval of time over which the average rate will be policed. A 
flow whose average rate is limited to 100 packets per second is more constrained 
than a source that is limited to 6,000 packets per minute, even though both have 
the same average rate over a long enough interval of time. For example, the latter 
constraint would allow a flow to send 1,000 packets in a given second-long inter-
val of time, while the former constraint would disallow this sending behavior.

•	 Peak rate. While the average-rate constraint limits the amount of traffic that can 
be sent into the network over a relatively long period of time, a peak-rate con-
straint limits the maximum number of packets that can be sent over a shorter 
period of time. Using our example above, the network may police a flow at an 
average rate of 6,000 packets per minute, while limiting the flow’s peak rate to 
1,500 packets per second.

•	 Burst size. The network may also wish to limit the maximum number of packets 
(the “burst” of packets) that can be sent into the network over an extremely short 
interval of time. In the limit, as the interval length approaches zero, the burst size 
limits the number of packets that can be instantaneously sent into the network. 
Even though it is physically impossible to instantaneously send multiple packets 
into the network (after all, every link has a physical transmission rate that cannot 
be exceeded!), the abstraction of a maximum burst size is a useful one.

The leaky bucket mechanism is an abstraction that can be used to characterize 
these policing limits. As shown in Figure 9.14, a leaky bucket consists of a bucket 
that can hold up to b tokens. Tokens are added to this bucket as follows. New tokens, 
which may potentially be added to the bucket, are always being generated at a rate 
of r tokens per second. (We assume here for simplicity that the unit of time is a 
second.) If the bucket is filled with less than b tokens when a token is generated, the 
newly generated token is added to the bucket; otherwise the newly generated token 
is ignored, and the token bucket remains full with b tokens.

Let us now consider how the leaky bucket can be used to police a packet flow. 
Suppose that before a packet is transmitted into the network, it must first remove a 
token from the token bucket. If the token bucket is empty, the packet must wait for 
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a token. (An alternative is for the packet to be dropped, although we will not con-
sider that option here.) Let us now consider how this behavior polices a traffic flow. 
Because there can be at most b tokens in the bucket, the maximum burst size for a 
leaky-bucket-policed flow is b packets. Furthermore, because the token generation 
rate is r, the maximum number of packets that can enter the network of any interval 
of time of length t is rt + b. Thus, the token-generation rate, r, serves to limit the 
long-term average rate at which packets can enter the network. It is also possible to 
use leaky buckets (specifically, two leaky buckets in series) to police a flow’s peak 
rate in addition to the long-term average rate; see the homework problems at the end 
of this chapter.

Leaky Bucket ∙ Weighted Fair Queuing ∙ Provable Maximum Delay 
in a Queue

Let’s close our discussion on policing by showing how the leaky bucket and WFQ 
can be combined to provide a bound on the delay through a router’s queue. (Readers  
who have forgotten about WFQ are encouraged to review WFQ, which is covered 
in Section 4.2.) Let’s consider a router’s output link that multiplexes n flows, each 
policed by a leaky bucket with parameters bi and ri, i = 1, . . . , n, using WFQ  
scheduling. We use the term flow here loosely to refer to the set of packets that are 
not distinguished from each other by the scheduler. In practice, a flow might be com-
prised of traffic from a single end-to-end connection or a collection of many such 
connections, see Figure 9.15.

Recall from our discussion of WFQ that each flow, i, is guaranteed to receive a 
share of the link bandwidth equal to at least R # wi>(gwj), where R is the transmission 

To network
Packets

Remove
token

Token
wait area

Bucket holds
up to
b tokens

r tokens/sec

Figure 9.14  ♦  The leaky bucket policer
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rate of the link in packets/sec. What then is the maximum delay that a packet will 
experience while waiting for service in the WFQ (that is, after passing through the 
leaky bucket)? Let us focus on flow 1. Suppose that flow 1’s token bucket is initially 
full. A burst of b1 packets then arrives to the leaky bucket policer for flow 1. These 
packets remove all of the tokens (without wait) from the leaky bucket and then join 
the WFQ waiting area for flow 1. Since these b1 packets are served at a rate of at least 
R # wi>(gwj) packet/sec, the last of these packets will then have a maximum delay, 
dmax, until its transmission is completed, where

dmax =
b1

R # w1>gwj

The rationale behind this formula is that if there are b1 packets in the queue and 
packets are being serviced (removed) from the queue at a rate of at least R # w1>(gwj) 
packets per second, then the amount of time until the last bit of the last packet is 
transmitted cannot be more than b1>(R # w1>(gwj)). A homework problem asks you 
to prove that as long as r1 6 R # w1>(gwj), then dmax is indeed the maximum delay 
that any packet in flow 1 will ever experience in the WFQ queue.

9.5.3 Diffserv
Having seen the motivation, insights, and specific mechanisms for providing  
multiple classes of service, let’s wrap up our study of approaches toward prov-
ing multiple classes of service with an example—the Internet Diffserv architecture 
[RFC 2475; Kilkki 1999]. Diffserv provides service differentiation—that is, the 

b1

r1

w1

wn

bn

rn

Figure 9.15  ♦   n multiplexed leaky bucket flows with WFQ scheduling
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ability to handle different classes of traffic in different ways within the Internet 
in a scalable manner. The need for scalability arises from the fact that millions of 
simultaneous source-destination traffic flows may be present at a backbone router. 
We’ll see shortly that this need is met by placing only simple functionality within 
the network core, with more complex control operations being implemented at the 
network’s edge.

Let’s begin with the simple network shown in Figure 9.16. We’ll describe one 
possible use of Diffserv here; other variations are possible, as described in RFC 
2475. The Diffserv architecture consists of two sets of functional elements:

•	 Edge functions: Packet classification and traffic conditioning. At the incoming 
edge of the network (that is, at either a Diffserv-capable host that generates traf-
fic or at the first Diffserv-capable router that the traffic passes through), arriving 
packets are marked. More specifically, the differentiated service (DS) field in the 
IPv4 or IPv6 packet header is set to some value [RFC 3260]. The definition of 
the DS field is intended to supersede the earlier definitions of the IPv4 type-of-
service field and the IPv6 traffic class fields that we discussed in Chapter 4. For 
example, in Figure 9.16, packets being sent from H1 to H3 might be marked at 
R1, while packets being sent from H2 to H4 might be marked at R2. The mark 
that a packet receives identifies the class of traffic to which it belongs. Different 
classes of traffic will then receive different service within the core network.

R4

Leaf router

Key:

Core router

R2

R1 R6

R7

R3 R5

H1

H2

H4

H3

R2 R3

Figure 9.16  ♦  A simple Diffserv network example
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•	 Core function: Forwarding. When a DS-marked packet arrives at a Diffserv- 
capable router, the packet is forwarded onto its next hop according to the so-
called per-hop behavior (PHB) associated with that packet’s class. The per-hop 
behavior influences how a router’s buffers and link bandwidth are shared among 
the competing classes of traffic. A crucial tenet of the Diffserv architecture is that 
a router’s per-hop behavior will be based only on packet markings, that is, the 
class of traffic to which a packet belongs. Thus, if packets being sent from H1 to 
H3 in Figure 9.16 receive the same marking as packets being sent from H2 to H4, 
then the network routers treat these packets as an aggregate, without distinguishing 
whether the packets originated at H1 or H2. For example, R3 would not distin-
guish between packets from H1 and H2 when forwarding these packets on to R4. 
Thus, the Diffserv architecture obviates the need to keep router state for individual 
source-destination pairs—a critical consideration in making Diffserv scalable.

An analogy might prove useful here. At many large-scale social events (for example, 
a large public reception, a large dance club or discothèque, a concert, or a football 
game), people entering the event receive a pass of one type or another: VIP passes 
for Very Important People; over-21 passes for people who are 21 years old or older 
(for example, if alcoholic drinks are to be served); backstage passes at concerts; press 
passes for reporters; even an ordinary pass for the Ordinary Person. These passes 
are typically distributed upon entry to the event, that is, at the edge of the event. It 
is here at the edge where computationally intensive operations, such as paying for 
entry, checking for the appropriate type of invitation, and matching an invitation 
against a piece of identification, are performed. Furthermore, there may be a limit on 
the number of people of a given type that are allowed into an event. If there is such 
a limit, people may have to wait before entering the event. Once inside the event, 
one’s pass allows one to receive differentiated service at many locations around the 
event—a VIP is provided with free drinks, a better table, free food, entry to exclusive 
rooms, and fawning service. Conversely, an ordinary person is excluded from cer-
tain areas, pays for drinks, and receives only basic service. In both cases, the service 
received within the event depends solely on the type of one’s pass. Moreover, all 
people within a class are treated alike.

Figure 9.17 provides a logical view of the classification and marking functions 
within the edge router. Packets arriving to the edge router are first classified. The 
classifier selects packets based on the values of one or more packet header fields (for 
example, source address, destination address, source port, destination port, and pro-
tocol ID) and steers the packet to the appropriate marking function. As noted above, 
a packet’s marking is carried in the DS field in the packet header.

In some cases, an end user may have agreed to limit its packet-sending rate to 
conform to a declared traffic profile. The traffic profile might contain a limit on the 
peak rate, as well as the burstiness of the packet flow, as we saw previously with the 
leaky bucket mechanism. As long as the user sends packets into the network in a  
way that conforms to the negotiated traffic profile, the packets receive their priority 
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marking and are forwarded along their route to the destination. On the other hand, 
if the traffic profile is violated, out-of-profile packets might be marked differently, 
might be shaped (for example, delayed so that a maximum rate constraint would be 
observed), or might be dropped at the network edge. The role of the metering function,  
shown in Figure 9.17, is to compare the incoming packet flow with the negotiated 
traffic profile and to determine whether a packet is within the negotiated traffic pro-
file. The actual decision about whether to immediately remark, forward, delay, or 
drop a packet is a policy issue determined by the network administrator and is not 
specified in the Diffserv architecture.

So far, we have focused on the marking and policing functions in the Diffserv 
architecture. The second key component of the Diffserv architecture involves the 
per-hop behavior (PHB) performed by Diffserv-capable routers. PHB is rather cryp-
tically, but carefully, defined as “a description of the externally observable forward-
ing behavior of a Diffserv node applied to a particular Diffserv behavior aggregate” 
[RFC 2475]. Digging a little deeper into this definition, we can see several important 
considerations embedded within:

•	 A PHB can result in different classes of traffic receiving different performance 
(that is, different externally observable forwarding behaviors).

•	 While a PHB defines differences in performance (behavior) among classes, it 
does not mandate any particular mechanism for achieving these behaviors. As 
long as the externally observable performance criteria are met, any implemen-
tation mechanism and any buffer/bandwidth allocation policy can be used. For 
example, a PHB would not require that a particular packet-queuing discipline (for 
example, a priority queue versus a WFQ queue versus a FCFS queue) be used to 
achieve a particular behavior. The PHB is the end, to which resource allocation 
and implementation mechanisms are the means.

•	 Differences in performance must be observable and hence measurable.

Packets Forward
Classifier Marker

Drop

Shaper/
Dropper

Meter

Figure 9.17  ♦  A simple Diffserv network example
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Two PHBs have been defined: an expedited forwarding (EF) PHB [RFC 3246] and an 
assured forwarding (AF) PHB [RFC 2597]. The expedited forwarding PHB speci-
fies that the departure rate of a class of traffic from a router must equal or exceed 
a configured rate. The assured forwarding PHB divides traffic into four classes, 
where each AF class is guaranteed to be provided with some minimum amount of 
bandwidth and buffering.

Let’s close our discussion of Diffserv with a few observations regarding its ser-
vice model. First, we have implicitly assumed that Diffserv is deployed within a 
single administrative domain, but typically an end-to-end service must be fashioned 
from multiple ISPs sitting between communicating end systems. In order to provide 
end-to-end Diffserv service, all the ISPs between the end systems must not only pro-
vide this service, but most also cooperate and make settlements in order to offer end 
customers true end-to-end service. Without this kind of cooperation, ISPs directly 
selling Diffserv service to customers will find themselves repeatedly saying: “Yes, 
we know you paid extra, but we don’t have a service agreement with the ISP that 
dropped and delayed your traffic. I’m sorry that there were so many gaps in your 
VoIP call!” Second, if Diffserv were actually in place and the network ran at only 
moderate load, most of the time there would be no perceived difference between a 
best-effort service and a Diffserv service. Indeed, end-to-end delay is usually domi-
nated by access rates and router hops rather than by queuing delays in the routers. 
Imagine the unhappy Diffserv customer who has paid more for premium service but 
finds that the best-effort service being provided to others almost always has the same 
performance as premium service!

9.5.4 �Per-Connection Quality-of-Service (QoS) Guarantees: 
Resource Reservation and Call Admission

In the previous section, we have seen that packet marking and policing, traffic isola-
tion, and link-level scheduling can provide one class of service with better perfor-
mance than another. Under certain scheduling disciplines, such as priority scheduling, 
the lower classes of traffic are essentially “invisible” to the highest-priority class of 
traffic. With proper network dimensioning, the highest class of service can indeed 
achieve extremely low packet loss and delay—essentially circuit-like performance. 
But can the network guarantee that an ongoing flow in a high-priority traffic class 
will continue to receive such service throughout the flow’s duration using only the 
mechanisms that we have described so far? It cannot. In this section, we’ll see why 
yet additional network mechanisms and protocols are required when a hard service 
guarantee is provided to individual connections.

Let’s return to our scenario from Section 9.5.2 and consider two 1 Mbps 
audio applications transmitting their packets over the 1.5 Mbps link, as shown in  
Figure 9.18. The combined data rate of the two flows (2 Mbps) exceeds the link 
capacity. Even with classification and marking, isolation of flows, and sharing of 
unused bandwidth (of which there is none), this is clearly a losing proposition. There 
is simply not enough bandwidth to accommodate the needs of both applications at 
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the same time. If the two applications equally share the bandwidth, each application 
would lose 25 percent of its transmitted packets. This is such an unacceptably low 
QoS that both audio applications are completely unusable; there’s no need even to 
transmit any audio packets in the first place.

Given that the two applications in Figure 9.18 cannot both be satisfied simul-
taneously, what should the network do? Allowing both to proceed with an unusable 
QoS wastes network resources on application flows that ultimately provide no utility 
to the end user. The answer is hopefully clear—one of the application flows should 
be blocked (that is, denied access to the network), while the other should be allowed 
to proceed on, using the full 1 Mbps needed by the application. The telephone net-
work is an example of a network that performs such call blocking—if the required 
resources (an end-to-end circuit in the case of the telephone network) cannot be allo-
cated to the call, the call is blocked (prevented from entering the network) and a busy 
signal is returned to the user. In our example, there is no gain in allowing a flow into 
the network if it will not receive a sufficient QoS to be considered usable. Indeed, 
there is a cost to admitting a flow that does not receive its needed QoS, as network 
resources are being used to support a flow that provides no utility to the end user.

By explicitly admitting or blocking flows based on their resource requirements, 
and the source requirements of already-admitted flows, the network can guarantee 
that admitted flows will be able to receive their requested QoS. Implicit in the need 
to provide a guaranteed QoS to a flow is the need for the flow to declare its QoS 
requirements. This process of having a flow declare its QoS requirement, and then 
having the network either accept the flow (at the required QoS) or block the flow is 
referred to as the call admission process. This then is our fourth insight (in addi-
tion to the three earlier insights from Section 9.5.2,) into the mechanisms needed to 
provide QoS.

R1

1.5 Mbps link

1 Mbps
audio

1 Mbps
audio

R2

H2

H1

H4

H3

Figure 9.18  ♦  �Two competing audio applications overloading the  
R1-to-R2 link

M09_KURO4140_07_SE_C09.indd   724 02/03/16   5:04 PM



9.5    •    Network Support for Multimedia         725

Insight 4: If sufficient resources will not always be available, and QoS is 
to be guaranteed, a call admission process is needed in which flows declare 
their QoS requirements and are then either admitted to the network (at the 
required QoS) or blocked from the network (if the required QoS cannot be 
provided by the network).

Our motivating example in Figure 9.18 highlights the need for several new network 
mechanisms and protocols if a call (an end-to-end flow) is to be guaranteed a given 
quality of service once it begins:

•	 Resource reservation.  The only way to guarantee that a call will have the resources 
(link bandwidth, buffers) needed to meet its desired QoS is to explicitly allocate 
those resources to the call—a process known in networking parlance as resource 
reservation. Once resources are reserved, the call has on-demand access to these 
resources throughout its duration, regardless of the demands of all other calls. If 
a call reserves and receives a guarantee of x Mbps of link bandwidth, and never 
transmits at a rate greater than x, the call will see loss- and delay-free performance.

•	 Call admission. If resources are to be reserved, then the network must have a 
mechanism for calls to request and reserve resources. Since resources are not 
infinite, a call making a call admission request will be denied admission, that is, 
be blocked, if the requested resources are not available. Such a call admission 
is performed by the telephone network—we request resources when we dial a 
number. If the circuits (TDMA slots) needed to complete the call are available, 
the circuits are allocated and the call is completed. If the circuits are not avail-
able, then the call is blocked, and we receive a busy signal. A blocked call can try 
again to gain admission to the network, but it is not allowed to send traffic into the 
network until it has successfully completed the call admission process. Of course, 
a router that allocates link bandwidth should not allocate more than is available 
at that link. Typically, a call may reserve only a fraction of the link’s bandwidth, 
and so a router may allocate link bandwidth to more than one call. However, the 
sum of the allocated bandwidth to all calls should be less than the link capacity if 
hard quality of service guarantees are to be provided.

•	 Call setup signaling. The call admission process described above requires that a 
call be able to reserve sufficient resources at each and every network router on its 
source-to-destination path to ensure that its end-to-end QoS requirement is met. 
Each router must determine the local resources required by the session, consider 
the amounts of its resources that are already committed to other ongoing sessions, 
and determine whether it has sufficient resources to satisfy the per-hop QoS 
requirement of the session at this router without violating local QoS guarantees 
made to an already-admitted session. A signaling protocol is needed to coordinate 
these various activities—the per-hop allocation of local resources, as well as the 
overall end-to-end decision of whether or not the call has been able to reserve suf-
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ficient resources at each and every router on the end-to-end path. This is the job 
of the call setup protocol, as shown in Figure 9.19. The RSVP protocol [Zhang 
1993, RFC 2210] was proposed for this purpose within an Internet architecture 
for providing quality-of-service guarantees. In ATM networks, the Q2931b pro-
tocol [Black 1995] carries this information among the ATM network’s switches 
and end point.

Despite a tremendous amount of research and development, and even products 
that provide for per-connection quality of service guarantees, there has been almost 
no extended deployment of such services. There are many possible reasons. First and 
foremost, it may well be the case that the simple application-level mechanisms that 
we studied in Sections 9.2 through 9.4, combined with proper network dimensioning 
(Section 9.5.1) provide “good enough” best-effort network service for multimedia 
applications. In addition, the added complexity and cost of deploying and managing 
a network that provides per-connection quality of service guarantees may be judged 
by ISPs to be simply too high given predicted customer revenues for that service.

9.6	 Summary

Multimedia networking is one of the most exciting developments in the Internet 
today. People throughout the world less and less time in front of their televisions, 
and are instead use their smartphones and devices to receive audio and video trans-

QoS call signaling setup

Request/reply

Figure 9.19  ♦  The call setup process
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missions, both live and prerecorded. Moreover, with sites like YouTube, users have 
become producers as well as consumers of multimedia Internet content. In addition 
to video distribution, the Internet is also being used to transport phone calls. In fact, 
over the next 10 years, the Internet, along with wireless Internet access, may make 
the traditional circuit-switched telephone system a thing of the past. VoIP not only 
provides phone service inexpensively, but also provides numerous value-added ser-
vices, such as video conferencing, online directory services, voice messaging, and 
integration into social networks such as Facebook and WeChat.

In Section 9.1, we described the intrinsic characteristics of video and voice, and 
then classified multimedia applications into three categories: (i) streaming stored 
audio/video, (ii) conversational voice/video-over-IP, and (iii) streaming live audio/
video.

In Section 9.2, we studied streaming stored video in some depth. For stream-
ing video applications, prerecorded videos are placed on servers, and users send 
requests to these servers to view the videos on demand. We saw that streaming 
video systems can be classified into two categories: UDP streaming and HTTP. 
We observed that the most important performance measure for streaming video is 
average throughput.

In Section 9.3, we examined how conversational multimedia applications, such 
as VoIP, can be designed to run over a best-effort network. For conversational mul-
timedia, timing considerations are important because conversational applications 
are highly delay-sensitive. On the other hand, conversational multimedia applica-
tions are loss—tolerant—occasional loss only causes occasional glitches in audio/
video playback, and these losses can often be partially or fully concealed. We saw 
how a combination of client buffers, packet sequence numbers, and timestamps can 
greatly alleviate the effects of network-induced jitter. We also surveyed the tech-
nology behind Skype, one of the leading voice- and video-over-IP companies. In  
Section 9.4, we examined two of the most important standardized protocols for 
VoIP, namely, RTP and SIP.

In Section 9.5, we introduced how several network mechanisms (link-level 
scheduling disciplines and traffic policing) can be used to provide differentiated ser-
vice among several classes of traffic.

Homework Problems and Questions

Chapter 9 Review Questions
SECTION 9.1
	R1.	 Reconstruct Table 9.1 for when Victor Video is watching a 4 Mbps video, 

Facebook Frank is looking at a new 100 Kbyte image every 20 seconds, and 
Martha Music is listening to 200 kbps audio stream.
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	R2.	 There are two types of redundancy in video. Describe them, and discuss how 
they can be exploited for efficient compression.

	R3.	 Suppose an analog audio signal is sampled 16,000 times per second, and each 
sample is quantized into one of 1024 levels. What would be the resulting bit 
rate of the PCM digital audio signal?

	R4.	 Multimedia applications can be classified into three categories. Name and 
describe each category.

SECTION 9.2
	R5.	 Streaming video systems can be classified into three categories. Name and 

briefly describe each of these categories.

	R6.	 List three disadvantages of UDP streaming.

	R7.	 With HTTP streaming, are the TCP receive buffer and the client’s application 
buffer the same thing? If not, how do they interact?

	R8.	 Consider the simple model for HTTP streaming. Suppose the server sends 
bits at a constant rate of 2 Mbps and playback begins when 8 million bits 
have been received. What is the initial buffering delay tp?

SECTION 9.3
	R9.	 What is the difference between end-to-end delay and packet jitter? What are 

the causes of packet jitter?

	R10.	 Why is a packet that is received after its scheduled playout time considered lost?

	R11.	 Section 9.3 describes two FEC schemes. Briefly summarize them. Both 
schemes increase the transmission rate of the stream by adding overhead. 
Does interleaving also increase the transmission rate?

SECTION 9.4
	R12.	 How are different RTP streams in different sessions identified by a receiver? 

How are different streams from within the same session identified?

	R13.	 What is the role of a SIP registrar? How is the role of an SIP registrar differ-
ent from that of a home agent in Mobile IP?

Problems
	 P1.	 Consider the figure below. Similar to our discussion of Figure 9.1, suppose 

that video is encoded at a fixed bit rate, and thus each video block contains 
video frames that are to be played out over the same fixed amount of time, △.  
The server transmits the first video block at t0, the second block at t0 + △,  
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the third block at t0 + 2△, and so on. Once the client begins playout, each 
block should be played out △ time units after the previous block.

Constant bit
rate video
transmission
by server
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reception
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a.	 Suppose that the client begins playout as soon as the first block arrives 
at t1. In the figure below, how many blocks of video (including the first 
block) will have arrived at the client in time for their playout? Explain 
how you arrived at your answer.

b.	 Suppose that the client begins playout now at t1 + △. How many blocks 
of video (including the first block) will have arrived at the client in time 
for their playout? Explain how you arrived at your answer.

c.	 In the same scenario at (b) above, what is the largest number of blocks 
that is ever stored in the client buffer, awaiting playout? Explain how you 
arrived at your answer.

d.	 What is the smallest playout delay at the client, such that every video 
block has arrived in time for its playout? Explain how you arrived at your 
answer.

	 P2.	 Recall the simple model for HTTP streaming shown in Figure 9.3. Recall that 
B denotes the size of the client’s application buffer, and Q denotes the num-
ber of bits that must be buffered before the client application begins playout. 
Also r denotes the video consumption rate. Assume that the server sends bits 
at a constant rate x whenever the client buffer is not full.

a.	 Suppose that x 6 r. As discussed in the text, in this case playout will 
alternate between periods of continuous playout and periods of freezing. 
Determine the length of each continuous playout and freezing period as a 
function of Q, r, and x.

b.	 Now suppose that x 7 r. At what time t = tf  does the client application 
buffer become full?
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	 P3.	 Recall the simple model for HTTP streaming shown in Figure 9.3. Suppose 
the buffer size is infinite but the server sends bits at variable rate x(t). Specifi-
cally, suppose x(t) has the following saw-tooth shape. The rate is initially 
zero at time t = 0 and linearly climbs to H at time t = T. It then repeats this 
pattern again and again, as shown in the figure below.

H

Time

T 2T 3T 4T

B
it

 r
at

e 
x(
t)

a.	 What is the server’s average send rate?

b.	 Suppose that Q = 0, so that the client starts playback as soon as it 
receives a video frame. What will happen?

c.	 Now suppose Q 7 0 and HT/2 Ú Q. Determine as a function of Q, H, 
and T the time at which playback first begins.

d.	 Suppose H 7 2r and Q = HT/2. Prove there will be no freezing after the 
initial playout delay.

e.	 Suppose H 7 2r. Find the smallest value of Q such that there will be no 
freezing after the initial playback delay.

f.	 Now suppose that the buffer size B is finite. Suppose H 7 2r. As a func-
tion of Q, B, T, and H, determine the time t = tf  when the client applica-
tion buffer first becomes full.

	 P4.	 Recall the simple model for HTTP streaming shown in Figure 9.3. Suppose 
the client application buffer is infinite, the server sends at the constant rate 
x, and the video consumption rate is r with r 6 x. Also suppose playback 
begins immediately. Suppose that the user terminates the video early at time 
t = E. At the time of termination, the server stops sending bits (if it hasn’t 
already sent all the bits in the video).

a.	 Suppose the video is infinitely long. How many bits are wasted (that is, 
sent but not viewed)?

b.	 Suppose the video is T seconds long with T 7 E. How many bits are 
wasted (that is, sent but not viewed)?
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	 P5.	 Consider a DASH system (as discussed in Section 2.6) for which there are N 
video versions (at N different rates and qualities) and N audio versions (at N 
different rates and qualities). Suppose we want to allow the player to choose 
at any time any of the N video versions and any of the N audio versions.

a.	 If we create files so that the audio is mixed in with the video, so server 
sends only one media stream at given time, how many files will the server 
need to store (each a different URL)?

b.	 If the server instead sends the audio and video streams separately and has the 
client synchronize the streams, how many files will the server need to store?

	 P6.	 In the VoIP example in Section 9.3, let h be the total number of header bytes 
added to each chunk, including UDP and IP header.

a.	 Assuming an IP datagram is emitted every 20 msecs, find the transmis-
sion rate in bits per second for the datagrams generated by one side of this 
application.

b.	 What is a typical value of h when RTP is used?

	 P7.	 Consider the procedure described in Section 9.3 for estimating average delay 
di. Suppose that u = 0.1. Let r1 - t1 be the most recent sample delay, let 
r2 - t2 be the next most recent sample delay, and so on.

a.	 For a given audio application suppose four packets have arrived at the 
receiver with sample delays r4 - t4, r3 - t3, r2 - t2, and r1 - t1. Express 
the estimate of delay d in terms of the four samples.

b.	 Generalize your formula for n sample delays.

c.	 For the formula in part (b), let n approach infinity and give the resulting 
formula. Comment on why this averaging procedure is called an exponen-
tial moving average.

	 P8.	 Repeat parts (a) and (b) in Question P7 for the estimate of average delay deviation.

	 P9.	 For the VoIP example in Section 9.3, we introduced an online procedure 
(exponential moving average) for estimating delay. In this problem we will 
examine an alternative procedure. Let ti be the timestamp of the ith packet 
received; let ri be the time at which the ith packet is received. Let dn be our 
estimate of average delay after receiving the nth packet. After the first packet 
is received, we set the delay estimate equal to d1 = r1 - t1.

a.	 Suppose that we would like dn = (r1 - t1 + r2 - t2 + g + rn - tn)/n 
for all n. Give a recursive formula for dn in terms of dn - 1, rn, and tn.

b.	 Describe why for Internet telephony, the delay estimate described in  
Section 9.3 is more appropriate than the delay estimate outlined in part (a).

	P10.	 Compare the procedure described in Section 9.3 for estimating average delay 
with the procedure in Section 3.5 for estimating round-trip time. What do the 
procedures have in common? How are they different?
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	P11.	 Consider the figure below (which is similar to Figure 9.3). A sender begins 
sending packetized audio periodically at t = 1. The first packet arrives at the 
receiver at t = 8.

Packets
generated

Time

Pa
ck

et
s

1 8

Packets
received

a.	 What are the delays (from sender to receiver, ignoring any playout delays) 
of packets 2 through 8? Note that each vertical and horizontal line segment 
in the figure has a length of 1, 2, or 3 time units.

b.	 If audio playout begins as soon as the first packet arrives at the receiver 
at t = 8, which of the first eight packets sent will not arrive in time for 
playout?

c.	 If audio playout begins at t = 9, which of the first eight packets sent will 
not arrive in time for playout?

d.	 What is the minimum playout delay at the receiver that results in all of the 
first eight packets arriving in time for their playout?

	P12.	 Consider again the figure in P11, showing packet audio transmission and 
reception times.

a.	 Compute the estimated delay for packets 2 through 8, using the formula 
for di from Section 9.3.2. Use a value of u = 0.1.

b.	 Compute the estimated deviation of the delay from the estimated average 
for packets 2 through 8, using the formula for vi from Section 9.3.2. Use a 
value of u = 0.1.

	P13.	 Recall the two FEC schemes for VoIP described in Section 9.3. Suppose the 
first scheme generates a redundant chunk for every four original chunks.  
Suppose the second scheme uses a low-bit rate encoding whose transmission 
rate is 25 percent of the transmission rate of the nominal stream.
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a.	 How much additional bandwidth does each scheme require? How much 
playback delay does each scheme add?

b.	 How do the two schemes perform if the first packet is lost in every group 
of five packets? Which scheme will have better audio quality?

c.	 How do the two schemes perform if the first packet is lost in every group 
of two packets? Which scheme will have better audio quality?

	P14.	 a.	� Consider an audio conference call in Skype with N 7 2 participants.  
Suppose each participant generates a constant stream of rate r bps. How 
many bits per second will the call initiator need to send? How many bits 
per second will each of the other N - 1 participants need to send? What is 
the total send rate, aggregated over all participants?

b.	 Repeat part (a) for a Skype video conference call using a central server.

c.	 Repeat part (b), but now for when each peer sends a copy of its video 
stream to each of the N - 1 other peers.

	P15.	 a.	� Suppose we send into the Internet two IP datagrams, each carrying a differ-
ent UDP segment. The first datagram has source IP address A1, destination 
IP address B, source port P1, and destination port T. The second datagram 
has source IP address A2, destination IP address B, source port P2, and 
destination port T. Suppose that A1 is different from A2 and that P1 is  
different from P2. Assuming that both datagrams reach their final destina-
tion, will the two UDP datagrams be received by the same socket? Why or 
why not?

b.	 Suppose Alice, Bob, and Claire want to have an audio conference call 
using SIP and RTP. For Alice to send and receive RTP packets to and 
from Bob and Claire, is only one UDP socket sufficient (in addition to the 
socket needed for the SIP messages)? If yes, then how does Alice’s SIP 
client distinguish between the RTP packets received from Bob and Claire?

	P16.	 True or false:

a.	 If stored video is streamed directly from a Web server to a media player, 
then the application is using TCP as the underlying transport protocol.

b.	 When using RTP, it is possible for a sender to change encoding in the 
middle of a session.

c.	 All applications that use RTP must use port 87.

d.	 If an RTP session has a separate audio and video stream for each sender, 
then the audio and video streams use the same SSRC.

e.	 In differentiated services, while per-hop behavior defines differences in 
performance among classes, it does not mandate any particular mecha-
nism for achieving these performances.
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f.	 Suppose Alice wants to establish an SIP session with Bob. In her INVITE 
message she includes the line: m=audio 48753 RTP/AVP 3 (AVP 3 denotes 
GSM audio). Alice has therefore indicated in this message that she wishes 
to send GSM audio.

g.	 Referring to the preceding statement, Alice has indicated in her INVITE 
message that she will send audio to port 48753.

h.	 SIP messages are typically sent between SIP entities using a default SIP 
port number.

i.	 In order to maintain registration, SIP clients must periodically send  
REGISTER messages.

j.	 SIP mandates that all SIP clients support G.711 audio encoding.

	P17.	 Consider the figure below, which shows a leaky bucket policer being fed by 
a stream of packets. The token buffer can hold at most two tokens, and is 
initially full at t = 0. New tokens arrive at a rate of one token per slot. The 
output link speed is such that if two packets obtain tokens at the beginning of 
a time slot, they can both go to the output link in the same slot. The timing 
details of the system are as follows:

1.	 Packets (if any) arrive at the beginning of the slot. Thus in the figure, 
packets 1, 2, and 3 arrive in slot 0. If there are already packets in the 
queue, then the arriving packets join the end of the queue. Packets pro-
ceed towards the front of the queue in a FIFO manner.

2.	 After the arrivals have been added to the queue, if there are any queued 
packets, one or two of those packets (depending on the number of avail-
able tokens) will each remove a token from the token buffer and go to the 
output link during that slot. Thus, packets 1 and 2 each remove a token 
from the buffer (since there are initially two tokens) and go to the output 
link during slot 0.

Arrivals

Packet queue
(wait for tokens)

9

10

7 6 4

8 5

1

3

2

t = 8 t = 6 t = 4 t = 2 t = 0 t = 4 t = 2 t = 0

r = 1 token/slot

b = 2 tokens
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3.	 A new token is added to the token buffer if it is not full, since the token 
generation rate is r = 1 token/slot.

4.	 Time then advances to the next time slot, and these steps repeat.

Answer the following questions:

a.	 For each time slot, identify the packets that are in the queue and the 
number of tokens in the bucket, immediately after the arrivals have 
been processed (step 1 above) but before any of the packets have passed 
through the queue and removed a token. Thus, for the t = 0 time slot in 
the example above, packets 1, 2, and 3 are in the queue, and there are two 
tokens in the buffer.

b.	 For each time slot indicate which packets appear on the output after the 
token(s) have been removed from the queue. Thus, for the t = 0 time slot 
in the example above, packets 1 and 2 appear on the output link from the 
leaky buffer during slot 0.

	P18.	 Repeat P17 but assume that r = 2. Assume again that the bucket is initially 
full.

	P19.	 Consider P18 and suppose now that r = 3 and that b = 2 as before. Will 
your answer to the question above change?

	P20.	 Consider the leaky bucket policer that polices the average rate and burst size 
of a packet flow. We now want to police the peak rate, p, as well. Show how 
the output of this leaky bucket policer can be fed into a second leaky bucket 
policer so that the two leaky buckets in series police the average rate, peak 
rate, and burst size. Be sure to give the bucket size and token generation rate 
for the second policer.

	P21.	 A packet flow is said to conform to a leaky bucket specification (r, b) with 
burst size b and average rate r if the number of packets that arrive to the 
leaky bucket is less than rt + b packets in every interval of time of length t 
for all t. Will a packet flow that conforms to a leaky bucket specification  
(r, b) ever have to wait at a leaky bucket policer with parameters r and b? 
Justify your answer.

	P22.	  Show that as long as r1 6 Rw1>(gwj), then dmax is indeed the maximum 
delay that any packet in flow 1 will ever experience in the WFQ queue.

Programming Assignment
In this lab, you will implement a streaming video server and client. The client will 
use the real-time streaming protocol (RTSP) to control the actions of the server. The 
server will use the real-time protocol (RTP) to packetize the video for transport over 
UDP. You will be given Python code that partially implements RTSP and RTP at 
the client and server. Your job will be to complete both the client and server code. 
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When you are finished, you will have created a client-server application that does 
the following:

•	 The client sends SETUP, PLAY, PAUSE, and TEARDOWN RTSP commands, 
and the server responds to the commands.

•	 When the server is in the playing state, it periodically grabs a stored JPEG frame, 
packetizes the frame with RTP, and sends the RTP packet into a UDP socket.

•	 The client receives the RTP packets, removes the JPEG frames, decompresses the 
frames, and renders the frames on the client’s monitor.

The code you will be given implements the RTSP protocol in the server and 
the RTP depacketization in the client. The code also takes care of displaying the 
transmitted video. You will need to implement RTSP in the client and RTP server. 
This programming assignment will significantly enhance the student’s understand-
ing of RTP, RTSP, and streaming video. It is highly recommended. The assignment 
also suggests a number of optional exercises, including implementing the RTSP 
DESCRIBE command at both client and server. You can find full details of the 
assignment, as well as an overview of the RTSP protocol, at the Web site www 
.pearsonhighered.com/cs-resources.
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What made you decide to specialize in multimedia networking?
This happened almost by accident. As a PhD student, I got involved with DARTnet, an 
experimental network spanning the United States with T1 lines. DARTnet was used as a 
proving ground for multicast and Internet real-time tools. That led me to write my first 
audio tool, NeVoT. Through some of the DARTnet participants, I became involved in the 
IETF, in the then-nascent Audio Video Transport working group. This group later ended up 
standardizing RTP.

What was your first job in the computer industry? What did it entail?
My first job in the computer industry was soldering together an Altair computer kit when I 
was a high school student in Livermore, California. Back in Germany, I started a little con-
sulting company that devised an address management program for a travel agency—storing 
data on cassette tapes for our TRS-80 and using an IBM Selectric typewriter with a home-
brew hardware interface as a printer.

My first real job was with AT&T Bell Laboratories, developing a network emulator for 
constructing experimental networks in a lab environment.

What are the goals of the Internet Real-Time Lab?
Our goal is to provide components and building blocks for the Internet as the single future 
communications infrastructure. This includes developing new protocols, such as GIST 
(for network-layer signaling) and LoST (for finding resources by location), or enhancing 
protocols that we have worked on earlier, such as SIP, through work on rich presence, peer-
to-peer systems, next-generation emergency calling, and service creation tools. Recently, 
we have also looked extensively at wireless systems for VoIP, as 802.11b and 802.11n net-
works and maybe WiMax networks are likely to become important last-mile technologies 
for telephony. We are also trying to greatly improve the ability of users to diagnose faults 
in the complicated tangle of providers and equipment, using a peer-to-peer fault diagnosis 
system called DYSWIS (Do You See What I See).

Henning Schulzrinne is a professor, chair of the Department of 
Computer Science, and head of the Internet Real-Time Laboratory 
at Columbia University. He is the co-author of RTP, RTSP, SIP, and 
GIST—key protocols for audio and video communications over 
the Internet. Henning received his BS in electrical and industrial 
engineering at TU Darmstadt in Germany, his MS in electrical and 
computer engineering at the University of Cincinnati, and his PhD in 
electrical engineering at the University of Massachusetts, Amherst.

Henning Schulzrinne

AN INTERVIEW WITH . . .
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We try to do practically relevant work, by building prototypes and open source sys-
tems, by measuring performance of real systems, and by contributing to IETF standards.

What is your vision for the future of multimedia networking?
We are now in a transition phase; just a few years shy of when IP will be the universal plat-
form for multimedia services, from IPTV to VoIP. We expect radio, telephone, and TV to 
be available even during snowstorms and earthquakes, so when the Internet takes over the 
role of these dedicated networks, users will expect the same level of reliability.

We will have to learn to design network technologies for an ecosystem of compet-
ing carriers, service and content providers, serving lots of technically untrained users 
and defending them against a small, but destructive, set of malicious and criminal users. 
Changing protocols is becoming increasingly hard. They are also becoming more complex, 
as they need to take into account competing business interests, security, privacy, and the 
lack of transparency of networks caused by firewalls and network address translators.

Since multimedia networking is becoming the foundation for almost all of consumer 
entertainment, there will be an emphasis on managing very large networks, at low cost. 
Users will expect ease of use, such as finding the same content on all of their devices.

Why does SIP have a promising future?
As the current wireless network upgrade to 3G networks proceeds, there is the hope of 
a single multimedia signaling mechanism spanning all types of networks, from cable 
modems, to corporate telephone networks and public wireless networks. Together with 
software radios, this will make it possible in the future that a single device can be used 
on a home network, as a cordless BlueTooth phone, in a corporate network via 802.11 
and in the wide area via 3G networks. Even before we have such a single universal wire-
less device, the personal mobility mechanisms make it possible to hide the differences 
between networks. One identifier becomes the universal means of reaching a person, 
rather than remembering or passing around half a dozen technology- or location-specific 
telephone numbers.

SIP also breaks apart the provision of voice (bit) transport from voice services. It now 
becomes technically possible to break apart the local telephone monopoly, where one com-
pany provides neutral bit transport, while others provide IP “dial tone” and the classical 
telephone services, such as gateways, call forwarding, and caller ID.

Beyond multimedia signaling, SIP offers a new service that has been missing in the 
Internet: event notification. We have approximated such services with HTTP kludges and 
e-mail, but this was never very satisfactory. Since events are a common abstraction for dis-
tributed systems, this may simplify the construction of new services.
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Do you have any advice for students entering the networking field?
Networking bridges disciplines. It draws from electrical engineering, all aspects of computer 
science, operations research, statistics, economics, and other disciplines. Thus, networking 
researchers have to be familiar with subjects well beyond protocols and routing algorithms.
Given that networks are becoming such an important part of everyday life, students wanting 
to make a difference in the field should think of the new resource constraints in networks: 
human time and effort, rather than just bandwidth or storage.

Work in networking research can be immensely satisfying since it is about allowing 
people to communicate and exchange ideas, one of the essentials of being human. The 
Internet has become the third major global infrastructure, next to the transportation system 
and energy distribution. Almost no part of the economy can work without high-performance 
networks, so there should be plenty of opportunities for the foreseeable future.
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