
be willing to pay their ISPs enough for the ISPs to install sufficient bandwidth to
support multimedia applications over a best-effort Internet? The organizational
issues are perhaps even more daunting. Note that an end-end path between two mul-
timedia end points will pass through the networks of multiple ISPs. From an organi-
zational standpoint, would these ISPs be willing to cooperate (perhaps with revenue
sharing) to ensure that the end-end path is properly dimensioned to support multi-
media applications? For a perspective on these economic and organizational issues,
see [Davies 2005]. For a perspective on provisioning tier-1 backbone networks to
support delay-sensitive traffic, see [Fraleigh 2003].

7.4 Protocols for Real-Time Interactive
Applications

Real-time interactive applications, including Internet phone and video conferenc-
ing, promise to drive much of the future Internet growth. It is therefore not surpris-
ing that standards bodies, such as the IETF and ITU, have been busy for many years
(and continue to be busy!) at hammering out standards for this class of applications.
With the appropriate standards in place for real-time interactive applications, inde-
pendent companies will be able to create new and compelling products that interop-
erate with each other. In this section we examine RTP, SIP, and H.323 for real-time
interactive applications. All three sets of standards are enjoying widespread imple-
mentation in industry products.

7.4.1 RTP

In the previous section we learned that the sender side of a multimedia application
appends header fields to the audio/video chunks before passing them to the trans-
port layer. These header fields include sequence numbers and timestamps. Since
most multimedia networking applications can make use of sequence numbers and
timestamps, it is convenient to have a standardized packet structure that includes
fields for audio/video data, sequence number, and timestamp, as well as other poten-
tially useful fields. RTP, defined in RFC 3550, is such a standard. RTP can be used
for transporting common formats such as PCM, GSM, and MP3 for sound and
MPEG and H.263 for video. It can also be used for transporting proprietary sound
and video formats. Today, RTP enjoys widespread implementation in hundreds of
products and research prototypes. It is also complementary to other important real-
time interactive protocols, including SIP and H.323.

In this section we provide an introduction to RTP and to its companion proto-
col, RTCP. We also encourage you to visit Henning Schulzrinne’s RTP site
[Schulzrinne-RTP 2007], which provides a wealth of information on the subject.

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 623

CH07_589-678.qxd 1/1/70 17:03 Page 623

kurose
Rectangle

Also, you may want to visit the RAT site [RAT 2007], which documents an Internet
phone application that uses RTP.

RTP Basics

RTP typically runs on top of UDP. The sending side encapsulates a media chunk
within an RTP packet, then encapsulates the packet in a UDP segment, and then
hands the segment to IP. The receiving side extracts the RTP packet from the UDP
segment, then extracts the media chunk from the RTP packet, and then passes the
chunk to the media player for decoding and rendering.

As an example, consider the use of RTP to transport voice. Suppose the voice
source is PCM-encoded (that is, sampled, quantized, and digitized) at 64 kbps. Fur-
ther suppose that the application collects the encoded data in 20-msec chunks, that is,
160 bytes in a chunk. The sending side precedes each chunk of the audio data with
an RTP header that includes the type of audio encoding, a sequence number, and a
timestamp. The RTP header is normally 12 bytes. The audio chunk along with the
RTP header form the RTP packet. The RTP packet is then sent into the UDP socket
interface. At the receiver side, the application receives the RTP packet from its socket
interface. The application extracts the audio chunk from the RTP packet and uses the
header fields of the RTP packet to properly decode and play back the audio chunk.

If an application incorporates RTP—instead of a proprietary scheme to provide
payload type, sequence numbers, or timestamps—then the application will more
easily interoperate with other networked multimedia applications. For example, if
two different companies develop Internet phone software and they both incorporate
RTP into their product, there may be some hope that a user using one of the Internet
phone products will be able to communicate with a user using the other Internet
phone product. In Section 7.4.3 we’ll see that RTP is often used in conjunction with
the Internet telephony standards.

It should be emphasized that RTP does not provide any mechanism to ensure
timely delivery of data or provide other quality-of-service (QoS) guarantees; it does
not even guarantee delivery of packets or prevent out-of-order delivery of packets.
Indeed, RTP encapsulation is seen only at the end systems. Routers do not distin-
guish between IP datagrams that carry RTP packets and IP datagrams that don’t.

RTP allows each source (for example, a camera or a microphone) to be assigned
its own independent RTP stream of packets. For example, for a video conference
between two participants, four RTP streams could be opened—two streams for
transmitting the audio (one in each direction) and two streams for transmitting the
video (again, one in each direction). However, many popular encoding techniques—
including MPEG 1 and MPEG 2—bundle the audio and video into a single stream
during the encoding process. When the audio and video are bundled by the encoder,
then only one RTP stream is generated in each direction.

RTP packets are not limited to unicast applications. They can also be sent over
one-to-many and many-to-many multicast trees. For a many-to-many multicast

624 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 624

session, all of the session’s senders and sources typically use the same multicast
group for sending their RTP streams. RTP multicast streams belonging together,
such as audio and video streams emanating from multiple senders in a video confer-
ence application, belong to an RTP session.

RTP Packet Header Fields

As shown in Figure 7.10, the four main RTP packet header fields are the payload
type, sequence number, timestamp, and source identifier fields.

The payload type field in the RTP packet is 7 bits long. For an audio stream, the
payload type field is used to indicate the type of audio encoding (for example, PCM,
adaptive delta modulation, linear predictive encoding) that is being used. If a sender
decides to change the encoding in the middle of a session, the sender can inform the
receiver of the change through this payload type field. The sender may want to change
the encoding in order to increase the audio quality or to decrease the RTP stream bit
rate. Table 7.2 lists some of the audio payload types currently supported by RTP.

For a video stream, the payload type is used to indicate the type of video encoding
(for example, motion JPEG, MPEG 1, MPEG 2, H.261). Again, the sender can change
video encoding on the fly during a session. Table 7.3 lists some of the video payload
types currently supported by RTP. The other important fields are the following:

• Sequence number field. The sequence number field is 16 bits long. The sequence
number increments by one for each RTP packet sent, and may be used by the
receiver to detect packet loss and to restore packet sequence. For example, if the
receiver side of the application receives a stream of RTP packets with a gap
between sequence numbers 86 and 89, then the receiver knows that packets 87
and 88 are missing. The receiver can then attempt to conceal the lost data.

• Timestamp field. The timestamp field is 32 bits long. It reflects the sampling
instant of the first byte in the RTP data packet. As we saw in the preceding
section, the receiver can use timestamps to remove packet jitter introduced in
the network and to provide synchronous playout at the receiver. The timestamp
is derived from a sampling clock at the sender. As an example, for audio the
timestamp clock increments by one for each sampling period (for example, each
125 �sec for an 8 kHz sampling clock); if the audio application generates
chunks consisting of 160 encoded samples, then the timestamp increases by 160
for each RTP packet when the source is active. The timestamp clock continues
to increase at a constant rate even if the source is inactive.

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 625

Payload
type

Sequence
number

Synchronization
source identifier

Miscellaneous
fieldsTimestamp

Figure 7.10 � RTP header fields

CH07_589-678.qxd 1/1/70 17:03 Page 625

Payload-Type Number Audio Format Sampling Rate Rate

0 PCM �-law 8 kHz 64 kbps

1 1016 8 kHz 4.8 kbps

3 GSM 8 kHz 13 kbps

7 LPC 8 kHz 2.4 kbps

9 G.722 16 kHz 48–64 kbps

14 MPEG Audio 90 kHz —

15 G.728 8 kHz 16 kbps

Table 7.2 � Audio payload types supported by RTP

Payload-Type Number Video Format

26 Motion JPEG

31 H.261

32 MPEG 1 video

33 MPEG 2 video

Table 7.3 � Some video payload types supported by RTP

• Synchronization source identifier (SSRC). The SSRC field is 32 bits long. It iden-
tifies the source of the RTP stream. Typically, each stream in an RTP session has
a distinct SSRC. The SSRC is not the IP address of the sender, but instead is a
number that the source assigns randomly when the new stream is started. The
probability that two streams get assigned the same SSRC is very small. Should
this happen, the two sources pick a new SSRC value.

Developing Software Applications with RTP

There are two approaches to developing an RTP-based networked application. The
first approach is for the application developer to incorporate RTP by hand––that is,
actually to write the code that performs RTP encapsulation at the sender side and
RTP unraveling at the receiver side. The second approach is for the application
developer to use existing RTP libraries (for C programmers) and Java classes (for

626 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 626

Java programmers), which perform the encapsulation and unraveling for the appli-
cation. Since you may be itching to write your first multimedia networking applica-
tion using RTP, let us now elaborate a little on these two approaches. (The
programming assignment at the end of this chapter will guide you through the cre-
ation of an RTP application.) We’ll do this in the context of unicast communication
(rather than for multicast).

Recall from Chapter 2 that the UDP API requires the sending process to set, for
each UDP segment it sends, the destination IP address and the destination port num-
ber before popping the packet into the UDP socket. The UDP segment will then
wander through the Internet and (if the segment is not lost due to, for example,
router buffer overflow) eventually arrive at the door of the receiving process for the
application. This door is fully addressed by the destination IP address and the desti-
nation port number. In fact, any IP datagram containing this destination IP address
and destination port number will be directed to the receiving process’s UDP door.
(The UDP API also lets the application developer set the UDP source port number;
however, this value has no effect on which process the segment is sent to.) It is
important to note that RTP does not mandate a specific port number. When the
application developer creates an RTP application, the developer specifies the port
numbers for the two sides of the application.

As part of the programming assignment for this chapter, you will write an RTP
server that encapsulates stored video frames within RTP packets. You will do this by
hand; that is, your application will grab a video frame, add the RTP headers to the
frame to create an RTP packet, and then pass the RTP frame to the UDP socket. To
do this, you will need to create placeholder fields for the various RTP headers,
including a sequence number field and a timestamp field. And for each RTP packet
that is created, you will have to set the sequence number and the timestamp appro-
priately. You will explicitly code all of these RTP operations into the sender side of
your application. As shown in Figure 7.11, your API to the network will be the stan-
dard UDP socket API.

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 627

IP

UDP

Data link

Physical

RTP

Application

Socket

Figure 7.11 � RTP is part of the application and lies above the UDP
socket.

CH07_589-678.qxd 1/1/70 17:03 Page 627

An alternative approach (not done in the programming assignment) is to use a
Java RTP class (or a C RTP library for C programmers) to implement the RTP
operations. With this approach, as shown in Figure 7.12, the application developer
is given the impression that RTP is part of the transport layer, with an RTP/UDP
API between the application layer and the transport layer. Without getting into the
nitty-gritty details (as they are class/library-dependent), when sending a chunk of
media into the API, the sending side of the application needs to provide the inter-
face with the media chunk itself, a payload-type number, an SSRC, and a time-
stamp, along with a destination port number and an IP destination address. We
mention here that the Java Media Framework (JMF) includes a complete RTP
implementation.

7.4.2 RTP Control Protocol (RTCP)

RFC 3550 also specifies RTCP, a protocol that a networked multimedia application
can use in conjunction with RTP. As shown in the multicast scenario in Figure 7.13,
RTCP packets are transmitted by each participant in an RTP session to all other par-
ticipants in the session using IP multicast. For an RTP session, typically there is a
single multicast address and all RTP and RTCP packets belonging to the session use
the multicast address. RTP and RTCP packets are distinguished from each other
through the use of distinct port numbers. (The RTCP port number is set to be equal
to the RTP port number plus one.)

RTCP packets do not encapsulate chunks of audio or video. Instead, RTCP
packets are sent periodically and contain sender and/or receiver reports that
announce statistics that can be useful to the application. These statistics include
number of packets sent, number of packets lost, and interarrival jitter. The RTP
specification [RFC 3550] does not dictate what the application should do with this
feedback information; this is up to the application developer. Senders can use the
feedback information, for example, to modify their transmission rates. The feedback

628 CHAPTER 7 • MULTIMEDIA NETWORKING

IP

UDP

Data link

Physical

RTP
Transport

Application

Figure 7.12 � RTP can be viewed as a sublayer of the transport layer.

CH07_589-678.qxd 1/1/70 17:03 Page 628

information can also be used for diagnostic purposes; for example, receivers can
determine whether problems are local, regional, or global.

RTCP Packet Types

For each RTP stream that a receiver receives as part of a session, the receiver gener-
ates a reception report. The receiver aggregates its reception reports into a single
RTCP packet. The packet is then sent into the multicast tree that connects all the ses-
sion’s participants. The reception report includes several fields, the most important
of which are listed below.

• The SSRC of the RTP stream for which the reception report is being generated.

• The fraction of packets lost within the RTP stream. Each receiver calculates the
number of RTP packets lost divided by the number of RTP packets sent as part
of the stream. If a sender receives reception reports indicating that the receivers
are receiving only a small fraction of the sender’s transmitted packets, it can
switch to a lower encoding rate, with the aim of decreasing network congestion
and improving the reception rate.

• The last sequence number received in the stream of RTP packets.

• The interarrival jitter, which is a smoothed estimate of the variation in the
interarrival time between successive packets in the RTP stream.

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 629

Receiver Receiver

RTCP

RTCP

RTCP

Internet

Sender

RTCP

Figure 7.13 � Both senders and receivers send RTCP messages.

CH07_589-678.qxd 1/1/70 17:03 Page 629

For each RTP stream that a sender is transmitting, the sender creates and trans-
mits RTCP sender report packets. These packets include information about the RTP
stream, including:

• The SSRC of the RTP stream

• The timestamp and wall clock time of the most recently generated RTP packet in
the stream

• The number of packets sent in the stream

• The number of bytes sent in the stream

Sender reports can be used to synchronize different media streams within an
RTP session. For example, consider a video conferencing application for which each
sender generates two independent RTP streams, one for video and one for audio.
The timestamps in these RTP packets are tied to the video and audio sampling
clocks, and are not tied to the wall clock time (i.e., real time). Each RTCP sender
report contains, for the most recently generated packet in the associated RTP stream,
the timestamp of the RTP packet and the wall clock time when the packet was cre-
ated. Thus the RTCP sender report packets associate the sampling clock with the
real-time clock. Receivers can use this association in RTCP sender reports to syn-
chronize the playout of audio and video.

For each RTP stream that a sender is transmitting, the sender also creates and
transmits source description packets. These packets contain information about the
source, such as the e-mail address of the sender, the sender’s name, and the applica-
tion that generates the RTP stream. It also includes the SSRC of the associated RTP
stream. These packets provide a mapping between the source identifier (that is, the
SSRC) and the user/host name.

RTCP packets are stackable; that is, receiver reception reports, sender reports,
and source descriptors can be concatenated into a single packet. The result-
ing packet is then encapsulated into a UDP segment and forwarded into the multi-
cast tree.

RTCP Bandwidth Scaling

You may have observed that RTCP has a potential scaling problem. Consider, for
example, an RTP session that consists of one sender and a large number of receivers.
If each of the receivers periodically generates RTCP packets, then the aggregate
transmission rate of RTCP packets can greatly exceed the rate of RTP packets sent
by the sender. Observe that the amount of RTP traffic sent into the multicast tree
does not change as the number of receivers increases, whereas the amount of RTCP
traffic grows linearly with the number of receivers. To solve this scaling problem,
RTCP modifies the rate at which a participant sends RTCP packets into the multi-
cast tree as a function of the number of participants in the session. Also, since each

630 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 630

participant sends control packets to everyone else, each participant can estimate the
total number of participants in the session [Friedman 1999].

RTCP attempts to limit its traffic to 5 percent of the session bandwidth. For exam-
ple, suppose there is one sender, which is sending video at a rate of 2 Mbps. Then
RTCP attempts to limit its traffic to 5 percent of 2 Mbps, or 100 kbps, as follows. The
protocol gives 75 percent of this rate, or 75 kbps, to the receivers; it gives the remain-
ing 25 percent of the rate, or 25 kbps, to the sender. The 75 kbps devoted to the
receivers is equally shared among the receivers. Thus, if there are R receivers, then
each receiver gets to send RTCP traffic at a rate of 75/R kbps, and the sender gets to
send RTCP traffic at a rate of 25 kbps. A participant (a sender or receiver) determines
the RTCP packet transmission period by dynamically calculating the average RTCP
packet size (across the entire session) and dividing the average RTCP packet size by
its allocated rate. In summary, the period for transmitting RTCP packets for a sender is

And the period for transmitting RTCP packets for a receiver is

7.4.3 SIP

Imagine a world in which, when you are working on your PC, your phone calls
arrive over the Internet to your PC. When you get up and start walking around, your
new phone calls are automatically routed to your PDA. And when you are driving in
your car, your new phone calls are automatically routed to some Internet appliance
in your car. In this same world, while participating in a conference call, you can
access an address book to call and invite other participants into the conference. The
other participants may be at their PCs, or walking with their PDAs, or driving their
cars—no matter where they are, your invitation is transparently routed to them. In
this same world, when you browse an individual’s homepage, there will be a link
“Call Me”; clicking on this link establishes an Internet phone session between your
PC and the owner of the homepage (wherever that person might be).

In this world, there is no longer a circuit-switched telephone network. Instead,
all calls pass over the Internet—from end to end. In this same world, companies no
longer use private branch exchanges (PBXs), that is, local circuit switches for han-
dling intracompany telephone calls. Instead, the intracompany phone traffic flows
over the company’s high-speed LAN.

All of this may sound like science fiction. And, of course, today’s circuit-
switched networks and PBXs are not going to disappear completely in the near
future [Jiang 2001]. Nevertheless, protocols and products exist to turn this vision
into a reality. Among the most promising protocols in this direction is the Session

T =
⋅ ⋅
number of receivers

.75 .05 session bandwidth
 RTCP packet size)(.avg

T =
⋅ ⋅

number of senders

.25 .05 session bandwidth
 RTCP packet size)(.avg

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 631

CH07_589-678.qxd 1/1/70 17:03 Page 631

Initiation Protocol (SIP), defined in [RFC 3261]. SIP is a lightweight protocol that
does the following:

• It provides mechanisms for establishing calls between a caller and a callee over
an IP network. It allows the caller to notify the callee that it wants to start a call.
It allows the participants to agree on media encodings. It also allows participants
to end calls.

• It provides mechanisms for the caller to determine the current IP address of the
callee. Users do not have a single, fixed IP address because they may be assigned
addresses dynamically (using DHCP) and because they may have multiple IP
devices, each with a different IP address.

• It provides mechanisms for call management, such as adding new media streams
during the call, changing the encoding during the call, inviting new participants
during the call, call transfer, and call holding.

Setting Up a Call to a Known IP Address

To understand the essence of SIP, it is best to take a look at a concrete example. In
this example, Alice is at her PC and she wants to call Bob, who is also working at
his PC. Alice’s and Bob’s PCs are both equipped with SIP-based software for mak-
ing and receiving phone calls. In this initial example, we’ll assume that Alice knows
the IP address of Bob’s PC. Figure 7.14 illustrates the SIP call-establishment
process.

In Figure 7.14, we see that an SIP session begins when Alice sends Bob an
INVITE message, which resembles an HTTP request message. This INVITE mes-
sage is sent over UDP to the well-known port 5060 for SIP. (SIP messages can also
be sent over TCP.) The INVITE message includes an identifier for Bob
(bob@193.64.210.89), an indication of Alice’s current IP address, an indication that
Alice desires to receive audio, which is to be encoded in format AVP 0 (PCM
encoded �-law) and encapsulated in RTP, and an indication that she wants to receive
the RTP packets on port 38060. After receiving Alice’s INVITE message, Bob sends
an SIP response message, which resembles an HTTP response message. This
response SIP message is also sent to the SIP port 5060. Bob’s response includes a
200 OK as well as an indication of his IP address, his desired encoding and packeti-
zation for reception, and his port number to which the audio packets should be sent.
Note that in this example Alice and Bob are going to use different audio-encoding
mechanisms: Alice is asked to encode her audio with GSM whereas Bob is asked to
encode his audio with PCM �-law. After receiving Bob’s response, Alice sends Bob
an SIP acknowledgment message. After this SIP transaction, Bob and Alice can talk.
(For visual convenience, Figure 7.14 shows Alice talking after Bob, but in truth they
would normally talk at the same time.) Bob will encode and packetize the audio as
requested and send the audio packets to port number 38060 at IP address

632 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 632

167.180.112.24. Alice will also encode and packetize the audio as requested and
send the audio packets to port number 48753 at IP address 193.64.210.89.

From this simple example, we have learned a number of key characteristics of SIP.
First, SIP is an out-of-band protocol: the SIP messages are sent and received in sockets
that are different from those used for sending and receiving the media data. Second,
the SIP messages themselves are ASCII-readable and resemble HTTP messages. Third,
SIP requires all messages to be acknowledged, so it can run over UDP or TCP.

In this example, let’s consider what would happen if Bob does not have a PCM
�-law codec for encoding audio. In this case, instead of responding with 200 OK,
Bob would likely respond with a 600 Not Acceptable and list in the message all the
codecs he can use. Alice would then choose one of the listed codecs and send another
INVITE message, this time advertising the chosen codec. Bob could also simply

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 633

Time Time

167.180.112.24

INVITE bob@193.64.210.89c=IN IP4 167.180.112.24m=audio 38060 RTP/AVP 0

200 OK
c=In IP4 193.64.210.89

m=audio 48753 RTP/AVP 3

Bob’s
terminal rings

193.64.210.89

µ Law audio

port 5060

port 5060

port 38060

Alice Bob

port 5060

port 48753

ACK

GSM

Figure 7.14 � SIP call establishment when Alice knows Bob’s IP address

CH07_589-678.qxd 1/1/70 17:03 Page 633

reject the call by sending one of many possible rejection reply codes. (There are
many such codes, including “busy,” “gone,” “payment required,” and “forbidden.”)

SIP Addresses

In the previous example, Bob’s SIP address is sip:bob@193.64.210.89. However, we
expect many—if not most—SIP addresses to resemble e-mail addresses. For example,
Bob’s address might be sip:bob@domain.com. When Alice’s SIP device sends an
INVITE message, the message would include this e-mail-like address; the SIP infra-
structure would then route the message to the IP device that Bob is currently using (as
we’ll discuss below). Other possible forms for the SIP address could be Bob’s legacy
phone number or simply Bob’s first/middle/last name (assuming it is unique).

An interesting feature of SIP addresses is that they can be included in Web
pages, just as people’s e-mail addresses are included in Web pages with the mailto
URL. For example, suppose Bob has a personal homepage, and he wants to pro-
vide a means for visitors to the homepage to call him. He could then simply include
the URL sip:bob@domain.com. When the visitor clicks on the URL, the SIP appli-
cation in the visitor’s device is launched and an INVITE message is sent to Bob.

SIP Messages

In this short introduction to SIP, we’ll not cover all SIP message types and headers.
Instead, we’ll take a brief look at the SIP INVITE message, along with a few com-
mon header lines. Let us again suppose that Alice wants to initiate an IP phone call
to Bob, and this time Alice knows only Bob’s SIP address, bob@domain.com, and
does not know the IP address of the device that Bob is currently using. Then her
message might look something like this:

INVITE sip:bob@domain.com SIP/2.0
Via: SIP/2.0/UDP 167.180.112.24
From: sip:alice@hereway.com
To: sip:bob@domain.com
Call-ID: a2e3a@pigeon.hereway.com
Content-Type: application/sdp
Content-Length: 885

c=IN IP4 167.180.112.24
m=audio 38060 RTP/AVP 0

The INVITE line includes the SIP version, as does an HTTP request message.
Whenever an SIP message passes through an SIP device (including the device that orig-
inates the message), it attaches a Via header, which indicates the IP address of the
device. (We’ll see soon that the typical INVITE message passes through many SIP

634 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 634

devices before reaching the callee’s SIP application.) Similar to an e-mail message, the
SIP message includes a From header line and a To header line. The message includes a
Call-ID, which uniquely identifies the call (similar to the message-ID in e-mail). It
includes a Content-Type header line, which defines the format used to describe the con-
tent contained in the SIP message. It also includes a Content-Length header line, which
provides the length in bytes of the content in the message. Finally, after a carriage return
and line feed, the message contains the content. In this case, the content provides infor-
mation about Alice’s IP address and how Alice wants to receive the audio.

Name Translation and User Location

In the example in Figure 7.14, we assumed that Alice’s SIP device knew the IP
address where Bob could be contacted. But this assumption is quite unrealistic, not
only because IP addresses are often dynamically assigned with DHCP, but also
because Bob may have multiple IP devices (for example, different devices for his
home, work, and car). So now let us suppose that Alice knows only Bob’s e-mail
address, bob@domain.com, and that this same address is used for SIP-based calls.
In this case, Alice needs to obtain the IP address of the device that the user
bob@domain.com is currently using. To find this out, Alice creates an INVITE mes-
sage that begins with INVITE bob@domain.com SIP/2.0 and sends this message to
an SIP proxy. The proxy will respond with an SIP reply that might include the IP
address of the device that bob@domain.com is currently using. Alternatively, the
reply might include the IP address of Bob’s voicemail box, or it might include a
URL of a Web page (that says “Bob is sleeping. Leave me alone!”). Also, the result
returned by the proxy might depend on the caller: if the call is from Bob’s wife, he
might accept the call and supply his IP address; if the call is from Bob’s mother-in-
law, he might respond with the URL that points to the I-am-sleeping Web page!

Now, you are probably wondering, how can the proxy server determine the cur-
rent IP address for bob@domain.com? To answer this question, we need to say a few
words about another SIP device, the SIP registrar. Every SIP user has an associated
registrar. Whenever a user launches an SIP application on a device, the application
sends an SIP register message to the registrar, informing the registrar of its current
IP address. For example, when Bob launches his SIP application on his PDA, the
application would send a message along the lines of:

REGISTER sip:domain.com SIP/2.0
Via: SIP/2.0/UDP 193.64.210.89
From: sip:bob@domain.com
To: sip:bob@domain.com
Expires: 3600

Bob’s registrar keeps track of Bob’s current IP address. Whenever Bob switches
to a new SIP device, the new device sends a new register message, indicating the

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 635

CH07_589-678.qxd 1/1/70 17:03 Page 635

new IP address. Also, if Bob remains at the same device for an extended period of
time, the device will send refresh register messages, indicating that the most
recently sent IP address is still valid. (In the example above, refresh messages need
to be sent every 3600 seconds to maintain the address at the registrar server.) It is
worth noting that the registrar is analogous to a DNS authoritative name server: the
DNS server translates fixed host names to fixed IP addresses; the SIP registrar trans-
lates fixed human identifiers (for example, bob@domain.com) to dynamic IP
addresses. Often SIP registrars and SIP proxies are run on the same host.

Now let’s examine how Alice’s SIP proxy server obtains Bob’s current IP
address. From the preceding discussion we see that the proxy server simply needs to
forward Alice’s INVITE message to Bob’s registrar/proxy. The registrar/proxy
could then forward the message to Bob’s current SIP device. Finally, Bob, having
now received Alice’s INVITE message, could send an SIP response to Alice.

As an example, consider Figure 7.15, in which jim@umass.edu, currently
working on 217.123.56.89, wants to initiate a Voice over IP (VoIP) session with
keith@upenn.edu, currently working on 197.87.54.21. The following steps are
taken: (1) Jim sends an INVITE message to the umass SIP proxy. (2) The proxy
does a DNS lookup on the SIP registrar upenn.edu (not shown in diagram) and then

636 CHAPTER 7 • MULTIMEDIA NETWORKING

9

5

6

4

7

2

3

1

8

SIP registrar
upenn.edu

SIP proxy
umass.edu

SIP client
217.123.56.89

SIP client
197.87.54.21

SIP registrar
eurcom.fr

Figure 7.15 � Session initiation, involving SIP proxies and registrars

CH07_589-678.qxd 1/1/70 17:03 Page 636

forwards the message to the registrar server. (3) Because keith@upenn.edu is no
longer registered at the upenn registrar, the upenn registrar sends a redirect response,
indicating that it should try keith@eurecom.fr. (4) The umass proxy sends an
INVITE message to the eurecom SIP registrar. (5) The eurecom registrar knows the
IP address of keith@eurecom.fr and forwards the INVITE message to the host
197.87.54.21, which is running Keith’s SIP client. (6–8) An SIP response is sent
back through registrars/proxies to the SIP client on 217.123.56.89. (9) Media is sent
directly between the two clients. (There is also an SIP acknowledgment message,
which is not shown.)

Our discussion of SIP has focused on call initiation for voice calls. SIP, being a
signaling protocol for initiating and ending calls in general, can be used for video
conference calls as well as for text-based sessions. In fact, SIP has become a funda-
mental component in many instant messaging applications. Readers desiring to
learn more about SIP are encouraged to visit Henning Schulzrinne’s SIP Web site
[Schulzrinne-SIP 2007]. In particular, on this site you will find open source software
for SIP clients and servers [SIP Software 2007].

7.4.4 H.323

As an alternative to SIP, H.323 is a popular standard for real-time audio and video
conferencing among end systems on the Internet. As shown in Figure 7.16, the
standard also covers how end systems attached to the Internet communicate with

7.4 • PROTOCOLS FOR REAL-TIME INTERACTIVE APPLICATIONS 637

Internet

H.323 endpoints Telephones

Gatekeeper

Gateway
Telephone
network

Figure 7.16 � H.323 end systems attached to the Internet can communi-
cate with telephones attached to a circuit-switched tele-
phone network.

CH07_589-678.qxd 1/1/70 17:03 Page 637

telephones attached to ordinary circuit-switched telephone networks. (SIP does this
as well, although we did not discuss it.) The H.323 gatekeeper is a device similar
to an SIP registrar.

The H.323 standard is an umbrella specification that includes the following
specifications:

• A specification for how end points negotiate common audio/video encodings.
Because H.323 supports a variety of audio and video encoding standards, a protocol
is needed to allow the communicating end points to agree on a common encoding.

• A specification for how audio and video chunks are encapsulated and sent over
the network. In particular, H.323 mandates RTP for this purpose.

• A specification for how end points communicate with their respective gatekeepers.

• A specification for how Internet phones communicate through a gateway with
ordinary phones in the PSTN.

Minimally, each H.323 end point must support the G.711 speech compression
standard. G.711 uses PCM to generate digitized speech at either 56 kbps or 64 kbps.
Although H.323 requires every end point to be voice capable (through G.711), video
capabilities are optional. Because video support is optional, manufacturers of termi-
nals can sell simpler speech terminals as well as more complex terminals that sup-
port both audio and video. Video capabilities for an H.323 end point are optional.
However, if an end point does support video, then it must (at the very least) support
the QCIF H.261 (176 x 144 pixels) video standard.

H.323 is a comprehensive umbrella standard, which, in addition to the stan-
dards and protocols described above, mandates an H.245 control protocol, a Q.931
signaling channel, and an RAS protocol for registration with the gatekeeper.

We conclude this section by highlighting some of the most important differ-
ences between H.323 and SIP.

• H.323 is a complete, vertically integrated suite of protocols for multimedia con-
ferencing: signaling, registration, admission control, transport, and codecs.

• SIP, on the other hand, addresses only session initiation and management and is
a single component. SIP works with RTP but does not mandate it. It works with
G.711 speech codecs and QCIF H.261 video codecs but does not mandate them.
It can be combined with other protocols and services.

• H.323 comes from the ITU (telephony), whereas SIP comes from the IETF and
borrows many concepts from the Web, DNS, and Internet e-mail.

• H.323, being an umbrella standard, is large and complex. SIP uses the KISS prin-
ciple: keep it simple, stupid.

For an excellent discussion of H.323, SIP, and VoIP in general, see [Hersent 2000].

638 CHAPTER 7 • MULTIMEDIA NETWORKING

CH07_589-678.qxd 1/1/70 17:03 Page 638

